
Guangming Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/982740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of Apoptosis in Chlamydia-infected Cells: Blockade of Mitochondrial Cytochrome c Release and Caspase Activation. Journal of Experimental Medicine, 1998, 187, 487-496.	8.5	550
2	Genomic transcriptional profiling of the developmental cycle of <i>Chlamydia trachomatis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8478-8483.	7.1	470
3	Identification of a Chlamydial Protease–Like Activity Factor Responsible for the Degradation of Host Transcription Factors. Journal of Experimental Medicine, 2001, 193, 935-942.	8.5	363
4	The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae. Journal of Clinical Investigation, 1999, 103, 747-753.	8.2	257
5	Degradation of Transcription Factor Rfx5 during the Inhibition of Both Constitutive and Interferon γ–Inducible Major Histocompatibility Complex Class I Expression in Chlamydia-Infected Cells. Journal of Experimental Medicine, 2000, 191, 1525-1534.	8.5	187
6	Chlamydia Inhibits Interferon γ–inducible Major Histocompatibility Complex Class II Expression by Degradation of  Upstream Stimulatory Factor 1. Journal of Experimental Medicine, 1999, 189, 1931-1938.	8.5	186
7	The Chlamydial Plasmid-Encoded Protein pgp3 Is Secreted into the Cytosol of <i>Chlamydia</i> -Infected Cells. Infection and Immunity, 2008, 76, 3415-3428.	2.2	151
8	A live-attenuated chlamydial vaccine protects against trachoma in nonhuman primates. Journal of Experimental Medicine, 2011, 208, 2217-2223.	8.5	142
9	Characterization of Fifty Putative Inclusion Membrane Proteins Encoded in the <i>Chlamydia trachomatis</i> Genome. Infection and Immunity, 2008, 76, 2746-2757.	2.2	140
10	Activation of Raf/MEK/ERK/cPLA2 Signaling Pathway Is Essential for Chlamydial Acquisition of Host Glycerophospholipids. Journal of Biological Chemistry, 2004, 279, 9409-9416.	3.4	137
11	Antigen Presentation by MHC Class II Molecules: Invariant Chain Function, Protein Trafficking, and the Molecular Basis of Diverse Determinant Capture. Human Immunology, 1997, 54, 159-169.	2.4	128
12	Tumor Necrosis Factor Alpha Production from CD8 ⁺ T Cells Mediates Oviduct Pathological Sequelae following Primary Genital Chlamydia muridarum Infection. Infection and Immunity, 2011, 79, 2928-2935.	2.2	125
13	Caspase-1 Contributes to <i>Chlamydia trachomatis</i> -Induced Upper Urogenital Tract Inflammatory Pathologies without Affecting the Course of Infection. Infection and Immunity, 2008, 76, 515-522.	2.2	123
14	The Secreted Protease Factor CPAF Is Responsible for Degrading Pro-apoptotic BH3-only Proteins inChlamydia trachomatis-infected Cells. Journal of Biological Chemistry, 2006, 281, 31495-31501.	3.4	122
15	A Genome-Wide Profiling of the Humoral Immune Response to <i>Chlamydia trachomatis</i> Infection Reveals Vaccine Candidate Antigens Expressed in Humans. Journal of Immunology, 2010, 185, 1670-1680.	0.8	121
16	Antigen-unspecific B Cells and Lymphoid Dendritic Cells Both Show Extensive Surface Expression of Processed Antigen–Major Histocompatibility Complex Class II Complexes after Soluble Protein Exposure In Vivo or In Vitro. Journal of Experimental Medicine, 1997, 186, 673-682.	8.5	118
17	Plasmid-Encoded Pgp3 Is a Major Virulence Factor for Chlamydia muridarum To Induce Hydrosalpinx in Mice. Infection and Immunity, 2014, 82, 5327-5335.	2.2	111
18	Intranasal Vaccination with a Secreted Chlamydial Protein Enhances Resolution of Genital Chlamydia muridarum Infection, Protects against Oviduct Pathology, and Is Highly Dependent upon Endogenous Gamma Interferon Production. Infection and Immunity, 2007, 75, 666-676.	2.2	103

#	Article	IF	CITATIONS
19	Chlamydia-Infected Cells Continue To Undergo Mitosis and Resist Induction of Apoptosis. Infection and Immunity, 2004, 72, 451-460.	2.2	99
20	Chlamydial Plasmid-Dependent Pathogenicity. Trends in Microbiology, 2017, 25, 141-152.	7.7	99
21	CT694 and pgp3 as Serological Tools for Monitoring Trachoma Programs. PLoS Neglected Tropical Diseases, 2012, 6, e1873.	3.0	98
22	Degradation of the Proapoptotic Proteins Bik, Puma, and Bim with Bcl-2 Domain 3 Homology in Chlamydia trachomatis-Infected Cells. Infection and Immunity, 2005, 73, 1861-1864.	2.2	97
23	A MyD88-Dependent Early IL-17 Production Protects Mice against Airway Infection with the Obligate Intracellular Pathogen <i>Chlamydia muridarum</i> . Journal of Immunology, 2009, 183, 1291-1300.	0.8	95
24	Mice Deficient in MyD88 Develop a Th2-Dominant Response and Severe Pathology in the Upper Genital Tract following <i>Chlamydia muridarum</i> Infection. Journal of Immunology, 2010, 184, 2602-2610.	0.8	95
25	Profiling of Human Antibody Responses to Chlamydia trachomatis Urogenital Tract Infection Using Microplates Arrayed with 156 Chlamydial Fusion Proteins. Infection and Immunity, 2006, 74, 1490-1499.	2.2	93
26	Chlamydia trachomatis Antigens Recognized in Women With Tubal Factor Infertility, Normal Fertility, and Acute Infection. Obstetrics and Gynecology, 2012, 119, 1009-1016.	2.4	89
27	Chlamydia vaccine candidates and tools for chlamydial antigen discovery. Expert Review of Vaccines, 2009, 8, 1365-1377.	4.4	88
28	Update on Chlamydia trachomatis Vaccinology. Vaccine Journal, 2017, 24, .	3.1	86
29	Antigen-Specific CD4+T Cells Produce Sufficient IFN-γ to Mediate Robust Protective Immunity against GenitalChlamydia muridarumInfection. Journal of Immunology, 2008, 180, 3375-3382.	0.8	83
30	Characterization of Pgp3, a <i>Chlamydia trachomatis</i> Plasmid-Encoded Immunodominant Antigen. Journal of Bacteriology, 2010, 192, 6017-6024.	2.2	80
31	Characterization of Chlamydia trachomatis Plasmid-Encoded Open Reading Frames. Journal of Bacteriology, 2013, 195, 3819-3826.	2.2	80
32	Structural Basis for Activation and Inhibition of the Secreted Chlamydia Protease CPAF. Cell Host and Microbe, 2008, 4, 529-542.	11.0	79
33	Genome-wide identification of Chlamydia trachomatis antigens associated with tubal factor infertility. Fertility and Sterility, 2011, 96, 715-721.	1.0	79
34	Cleavage of Host Keratin 8 by a Chlamydia-Secreted Protease. Infection and Immunity, 2004, 72, 3863-3868.	2.2	78
35	Interleukin-12 Production Is Required for Chlamydial Antigen-Pulsed Dendritic Cells To Induce Protection against Live Chlamydia trachomatis Infection. Infection and Immunity, 1999, 67, 1763-1769.	2.2	78
36	Human Antibody Responses to a Chlamydia-Secreted Protease Factor. Infection and Immunity, 2004, 72, 7164-7171.	2.2	76

#	Article	IF	CITATIONS
37	Intracellular Interleukin-1α Mediates Interleukin-8 Production Induced by <i>Chlamydia trachomatis</i> Infection via a Mechanism Independent of Type I Interleukin-1 Receptor. Infection and Immunity, 2008, 76, 942-951.	2.2	76
38	Killing me softly: chlamydial use of proteolysis for evading host defenses. Trends in Microbiology, 2009, 17, 467-474.	7.7	75
39	Reduced Live Organism Recovery and Lack of Hydrosalpinx in Mice Infected with Plasmid-Free Chlamydia muridarum. Infection and Immunity, 2014, 82, 983-992.	2.2	75
40	Chlamydia trachomatis Infection Inhibits Both Bax and Bak Activation Induced by Staurosporine. Infection and Immunity, 2004, 72, 5470-5474.	2.2	73
41	Transformation of Chlamydia muridarum Reveals a Role for Pgp5 in Suppression of Plasmid-Dependent Gene Expression. Journal of Bacteriology, 2014, 196, 989-998.	2.2	71
42	Identification of <i>Chlamydia trachomatis</i> Outer Membrane Complex Proteins by Differential Proteomics. Journal of Bacteriology, 2010, 192, 2852-2860.	2.2	70
43	Chlamydial Induction of Hydrosalpinx in 11 Strains of Mice Reveals Multiple Host Mechanisms for Preventing Upper Genital Tract Pathology. PLoS ONE, 2014, 9, e95076.	2.5	70
44	The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol. BMC Microbiology, 2011, 11, 87.	3.3	64
45	The Hypothetical Protein CT813 Is Localized in the Chlamydia trachomatis Inclusion Membrane and Is Immunogenic in Women Urogenitally Infected with C. trachomatis. Infection and Immunity, 2006, 74, 4826-4840.	2.2	63
46	<i>In Vivo</i> and <i>Ex Vivo</i> Imaging Reveals a Long-Lasting Chlamydial Infection in the Mouse Gastrointestinal Tract following Genital Tract Inoculation. Infection and Immunity, 2015, 83, 3568-3577.	2.2	63
47	Chlamydia Trachomatis Secretion of Proteases for Manipulating Host Signaling Pathways. Frontiers in Microbiology, 2011, 2, 14.	3.5	62
48	<i>Chlamydia pneumoniae</i> Secretion of a Protease-Like Activity Factor for Degrading Host Cell Transcription Factors Is Required for Major Histocompatibility Complex Antigen Expression. Infection and Immunity, 2002, 70, 345-349.	2.2	61
49	Association of tubal factor infertility with elevated antibodies to Chlamydia trachomatis caseinolytic protease P. American Journal of Obstetrics and Gynecology, 2010, 203, 494.e7-494.e14.	1.3	61
50	Chlamydia pneumoniae infection significantly exacerbates aortic atherosclerosis in an LDLR-/- mouse model within six months. Molecular and Cellular Biochemistry, 2000, 215, 123-128.	3.1	55
51	Secretion of the chlamydial virulence factor CPAF requires the Sec-dependent pathway. Microbiology (United Kingdom), 2010, 156, 3031-3040.	1.8	53
52	Chlamydia-secreted protease CPAF degrades host antimicrobial peptides. Microbes and Infection, 2015, 17, 402-408.	1.9	53
53	Chlamydial Protease-Like Activity Factor Induces Protective Immunity against Genital Chlamydial Infection in Transgenic Mice That Express the Human HLA-DR4 Allele. Infection and Immunity, 2006, 74, 6722-6729.	2.2	52
54	The Chromosome-Encoded Hypothetical Protein TC0668 Is an Upper Genital Tract Pathogenicity Factor of Chlamydia muridarum. Infection and Immunity, 2016, 84, 467-479.	2.2	51

#	Article	IF	CITATIONS
55	NF-κB Activation Is Not Required for <i>Chlamydia trachomatis</i> Inhibition of Host Epithelial Cell Apoptosis. Journal of Immunology, 2005, 174, 1701-1708.	0.8	50
56	Production of a Proteolytically Active Protein, Chlamydial Protease/Proteasome-Like Activity Factor, by Five Different Chlamydia Species. Infection and Immunity, 2005, 73, 1868-1872.	2.2	50
57	Intranasal immunization with chlamydial protease-like activity factor and CpG deoxynucleotides enhances protective immunity against genital Chlamydia muridarum infection. Vaccine, 2007, 25, 3773-3780.	3.8	50
58	A chlamydial type III-secreted effector protein (Tarp) is predominantly recognized by antibodies from humans infected with Chlamydia trachomatis and induces protective immunity against upper genital tract pathologies in mice. Vaccine, 2009, 27, 2967-2980.	3.8	49
59	Chlamydia trachomatis secretion of hypothetical protein CT622 into host cell cytoplasm via a secretion pathway that can be inhibited by the type III secretion system inhibitor compound 1. Microbiology (United Kingdom), 2011, 157, 1134-1144.	1.8	49
60	<i>In Vitro</i> Passage Selects for Chlamydia muridarum with Enhanced Infectivity in Cultured Cells but Attenuated Pathogenicity in Mouse Upper Genital Tract. Infection and Immunity, 2015, 83, 1881-1892.	2.2	49
61	Chlamydial Plasmid-Encoded Virulence Factor Pgp3 Neutralizes the Antichlamydial Activity of Human Cathelicidin LL-37. Infection and Immunity, 2015, 83, 4701-4709.	2.2	49
62	Intramolecular Dimerization Is Required for the Chlamydia-Secreted Protease CPAF To Degrade Host Transcriptional Factors. Infection and Immunity, 2004, 72, 3869-3875.	2.2	48
63	Prevention of Chlamydia-Induced Infertility by Inhibition of Local Caspase Activity. Journal of Infectious Diseases, 2013, 207, 1095-1104.	4.0	48
64	Chlamydia trachomatis pulmonary infection induces greater inflammatory pathology in immunoglobulin A deficient mice. Cellular Immunology, 2004, 230, 56-64.	3.0	47
65	Oviduct Infection and Hydrosalpinx in DBA1/j Mice Is Induced by Intracervical but Not Intravaginal Inoculation with Chlamydia muridarum. PLoS ONE, 2013, 8, e71649.	2.5	47
66	The protective efficacy of chlamydial protease-like activity factor vaccination is dependent upon CD4+ T cells. Cellular Immunology, 2006, 242, 110-117.	3.0	45
67	Inhibition of host cell cytokinesis by Chlamydia trachomatis infection. Journal of Infection, 2003, 47, 45-51.	3.3	44
68	Protective immunity against mouse upper genital tract pathology correlates with high IFNÎ ³ but low IL-17 T cell and anti-secretion protein antibody responses induced by replicating chlamydial organisms in the airway. Vaccine, 2012, 30, 475-485.	3.8	44
69	Cleavage-dependent activation of a chlamydia-secreted protease. Molecular Microbiology, 2004, 52, 1487-1494.	2.5	43
70	Antibodies from women urogenitally infected with C. trachomatis predominantly recognized the plasmid protein pgp3 in a conformation-dependent manner. BMC Microbiology, 2008, 8, 90.	3.3	42
71	Structure of the Chlamydia trachomatis Immunodominant Antigen Pgp3. Journal of Biological Chemistry, 2013, 288, 22068-22079.	3.4	41
72	Chlamydia Spreading from the Genital Tract to the Gastrointestinal Tract – A Two-Hit Hypothesis. Trends in Microbiology, 2018, 26, 611-623.	7.7	41

#	Article	IF	CITATIONS
73	Nonpathogenic Colonization with Chlamydia in the Gastrointestinal Tract as Oral Vaccination for Inducing Transmucosal Protection. Infection and Immunity, 2018, 86, .	2.2	41
74	Chlamydia trachomatis GlgA Is Secreted into Host Cell Cytoplasm. PLoS ONE, 2013, 8, e68764.	2.5	40
75	Inhibition of Proteolytic Activity of a Chlamydial Proteasome/Protease-Like Activity Factor by Antibodies from Humans Infected with Chlamydia trachomatis. Infection and Immunity, 2005, 73, 4414-4419.	2.2	39
76	pORF5 plasmid protein of Chlamydia trachomatis induces MAPK-mediated pro-inflammatory cytokines via TLR2 activation in THP-1 cells. Science China Life Sciences, 2013, 56, 460-466.	4.9	39
77	National Institute of Allergy and Infectious Diseases workshop report: "Chlamydia vaccines: The way forward― Vaccine, 2019, 37, 7346-7354.	3.8	39
78	Lack of Long-Lasting Hydrosalpinx in A/J Mice Correlates with Rapid but Transient Chlamydial Ascension and Neutrophil Recruitment in the Oviduct following Intravaginal Inoculation with Chlamydia muridarum. Infection and Immunity, 2014, 82, 2688-2696.	2.2	38
79	Intravenous Inoculation with Chlamydia muridarum Leads to a Long-Lasting Infection Restricted to the Gastrointestinal Tract. Infection and Immunity, 2016, 84, 2382-2388.	2.2	38
80	Vaccination with the defined chlamydial secreted protein CPAF induces robust protection against female infertility following repeated genital chlamydial challenge. Vaccine, 2011, 29, 2519-2522.	3.8	37
81	Signaling via Tumor Necrosis Factor Receptor 1 but Not Toll-Like Receptor 2 Contributes Significantly to Hydrosalpinx Development following Chlamydia muridarum Infection. Infection and Immunity, 2014, 82, 1833-1839.	2.2	37
82	Plasmid-Encoded Pgp5 Is a Significant Contributor to Chlamydia muridarum Induction of Hydrosalpinx. PLoS ONE, 2015, 10, e0124840.	2.5	37
83	The Chlamydia muridarum Organisms Fail to Auto-Inoculate the Mouse Genital Tract after Colonization in the Gastrointestinal Tract for 70 days. PLoS ONE, 2016, 11, e0155880.	2.5	37
84	The Genital Tract Virulence Factor pGP3 Is Essential for Chlamydia muridarum Colonization in the Gastrointestinal Tract. Infection and Immunity, 2018, 86, .	2.2	37
85	Induction of Cross-Serovar Protection against Genital Chlamydial Infection by a Targeted Multisubunit Vaccination Approach. Vaccine Journal, 2007, 14, 1537-1544.	3.1	36
86	Complement Factor C5 but Not C3 Contributes Significantly to Hydrosalpinx Development in Mice Infected with Chlamydia muridarum. Infection and Immunity, 2014, 82, 3154-3163.	2.2	36
87	Altered protein secretion of Chlamydia trachomatis in persistently infected human endocervical epithelial cells. Microbiology (United Kingdom), 2011, 157, 2759-2771.	1.8	35
88	Induction of protective immunity against Chlamydia muridarum intravaginal infection with the chlamydial immunodominant antigen macrophage infectivity potentiator. Microbes and Infection, 2013, 15, 329-338.	1.9	35
89	Immunity to Chlamydia trachomatis Mouse Pneumonitis Induced by Vaccination with Live Organisms Correlates with Early Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-12 Production and with Dendritic Cell-Like Maturation. Infection and Immunity, 1999, 67, 1606-1613.	2.2	35
90	Bioluminescence Imaging of Chlamydia muridarum Ascending Infection in Mice. PLoS ONE, 2014, 9, e101634.	2.5	35

#	Article	IF	CITATIONS
91	Inhibition of staurosporine-induced activation of the proapoptotic multidomain Bcl-2 proteins Bax and Bak by three invasive chlamydial species. Journal of Infection, 2006, 53, 408-414.	3.3	34
92	Autoprocessing and self-activation of the secreted protease CPAF in Chlamydia-infected cells. Microbial Pathogenesis, 2010, 49, 164-173.	2.9	33
93	Identifying catalytic residues in CPAF, a Chlamydia-secreted protease. Archives of Biochemistry and Biophysics, 2009, 485, 16-23.	3.0	32
94	Chlamydial Lipoproteins Stimulate Toll-Like Receptors 1/2 Mediated Inflammatory Responses through MyD88-Dependent Pathway. Frontiers in Microbiology, 2017, 8, 78.	3.5	32
95	Distinct Roles of CD28- and CD40 Ligand-Mediated Costimulation in the Development of Protective Immunity and Pathology during <i>Chlamydia muridarum</i> Urogenital Infection in Mice. Infection and Immunity, 2009, 77, 3080-3089.	2.2	31
96	Tim-4 Inhibits NLRP3 Inflammasome via the LKB1/AMPKα Pathway in Macrophages. Journal of Immunology, 2019, 203, 990-1000.	0.8	31
97	Chlamydia muridarum with Mutations in Chromosomal Genes tc0237 and/or tc0668 Is Deficient in Colonizing the Mouse Gastrointestinal Tract. Infection and Immunity, 2017, 85, .	2.2	30
98	Chlamydial plasmid-encoded virulence factor Pgp3 interacts with human cathelicidin peptide LL-37 to modulate immune response. Microbes and Infection, 2019, 21, 50-55.	1.9	30
99	Immunization with chlamydial plasmid protein pORF5 DNA vaccine induces protective immunity against genital chlamydial infection in mice. Science in China Series C: Life Sciences, 2008, 51, 973-980.	1.3	29
100	Characterization of CPAF Critical Residues and Secretion during Chlamydia trachomatis Infection. Infection and Immunity, 2015, 83, 2234-2241.	2.2	29
101	A path forward for the chlamydial virulence factor CPAF. Microbes and Infection, 2013, 15, 1026-1032.	1.9	28
102	Contribution of Interleukin-12 p35 (IL-12p35) and IL-12p40 to Protective Immunity and Pathology in Mice Infected with Chlamydia muridarum. Infection and Immunity, 2013, 81, 2962-2971.	2.2	28
103	The cryptic plasmid is more important for Chlamydia muridarum to colonize the mouse gastrointestinal tract than to infect the genital tract. PLoS ONE, 2017, 12, e0177691.	2.5	28
104	The Plasmid-Encoded pGP3 Promotes <i>Chlamydia</i> Evasion of Acidic Barriers in Both Stomach and Vagina. Infection and Immunity, 2019, 87, .	2.2	27
105	Transformation of Sexually Transmitted Infection-Causing Serovars of Chlamydia trachomatis Using Blasticidin for Selection. PLoS ONE, 2013, 8, e80534.	2.5	27
106	The Secreted Protease Factor CPAF Is Responsible for Degrading Pro-apoptotic BH3-only Proteins in Chlamydia trachomatis-infected Cells. Journal of Biological Chemistry, 2006, 281, 31495-31501.	3.4	27
107	Localization of Chlamydia trachomatis hypothetical protein CT311 in host cell cytoplasm. Microbial Pathogenesis, 2011, 51, 101-109.	2.9	26
108	Genome-Wide Identification of <i>Chlamydia trachomatis</i> Antigens Associated with Trachomatous Trichiasis. , 2012, 53, 2551.		26

#	Article	IF	CITATIONS
109	Infection of myocytes with chlamydiae. Microbiology (United Kingdom), 2002, 148, 3955-3959.	1.8	26
110	A limited role for antibody in protective immunity induced by rCPAF and CpG vaccination against primary genital <i>Chlamydia muridarum</i> challenge. FEMS Immunology and Medical Microbiology, 2009, 55, 271-279.	2.7	25
111	Infection with Chlamydia pneumoniae as a cause of coronary heart disease: the hypothesis is still untested#. Pathogens and Disease, 2015, 73, 1-9.	2.0	25
112	Neutralizing antichlamydial activity of complement by chlamydia-secreted protease CPAF. Microbes and Infection, 2016, 18, 669-674.	1.9	25
113	Small Molecule Inhibition of Rab7 Impairs B Cell Class Switching and Plasma Cell Survival To Dampen the Autoantibody Response in Murine Lupus. Journal of Immunology, 2016, 197, 3792-3805.	0.8	25
114	Enhanced upper genital tract pathologies by blocking Tim-3 and PD-L1 signaling pathways in mice intravaginally infected with Chlamydia muridarum. BMC Infectious Diseases, 2011, 11, 347.	2.9	24
115	A Chlamydia trachomatis OmcB C-Terminal Fragment Is Released into the Host Cell Cytoplasm and Is Immunogenic in Humans. Infection and Immunity, 2011, 79, 2193-2203.	2.2	23
116	Chlamydia trachomatis Secretion of an Immunodominant Hypothetical Protein (CT795) into Host Cell Cytoplasm. Journal of Bacteriology, 2011, 193, 2498-2509.	2.2	23
117	Oral Chlamydia vaccination induces transmucosal protection in the airway. Vaccine, 2018, 36, 2061-2068.	3.8	23
118	Characterization of hypothetical proteins Cpn0146, 0147, 0284 & 0285 that are predicted to be in the Chlamydia pneumoniae inclusion membrane. BMC Microbiology, 2007, 7, 38.	3.3	22
119	The Contribution of Interleukin-12/Interferon-Î ³ Axis in Protection Against Neonatal Pulmonary <i>Chlamydia muridarum</i> Challenge. Journal of Interferon and Cytokine Research, 2010, 30, 407-415.	1.2	22
120	Identification of Antigen-Specific Antibody Responses Associated with Upper Genital Tract Pathology in Mice Infected with Chlamydia muridarum. Infection and Immunity, 2012, 80, 1098-1106.	2.2	22
121	Induction of Protective Immunity against Chlamydia muridarum Intravaginal Infection with a Chlamydial Glycogen Phosphorylase. PLoS ONE, 2012, 7, e32997.	2.5	22
122	Chlamydia trachomatis Outer Membrane Complex Protein B (OmcB) Is Processed by the Protease CPAF. Journal of Bacteriology, 2013, 195, 951-957.	2.2	22
123	IL-6-mediated signaling pathways limit Chlamydia muridarum infection and exacerbate its pathogenicity in the mouse genital tract. Microbes and Infection, 2017, 19, 536-545.	1.9	22
124	Chlamydial protease-like activity factor—insights into immunity and vaccine development. Journal of Reproductive Immunology, 2009, 83, 179-184.	1.9	21
125	The Chlamydia-Secreted Protease CPAF Promotes Chlamydial Survival in the Mouse Lower Genital Tract. Infection and Immunity, 2016, 84, 2697-2702.	2.2	21
126	Immunization with a Combination of Integral Chlamydial Antigens and a Defined Secreted Protein Induces Robust Immunity against Genital Chlamydial Challenge. Infection and Immunity, 2010, 78, 3942-3949.	2.2	20

#	Article	IF	CITATIONS
127	Heat denatured enzymatically inactive recombinant chlamydial protease-like activity factor induces robust protective immunity against genital chlamydial challenge. Vaccine, 2010, 28, 2323-2329.	3.8	20
128	Induction of protective immunity against Chlamydia muridarum intracervical infection in DBA/1j mice. Vaccine, 2014, 32, 1407-1413.	3.8	20
129	Immunodominant regions prediction of nucleocapsid protein for SARS-CoV-2 early diagnosis: a bioinformatics and immunoinformatics study. Pathogens and Global Health, 2020, 114, 463-470.	2.3	20
130	Rottlerin Inhibits Chlamydial Intracellular Growth and Blocks Chlamydial Acquisition of Sphingolipids from Host Cells. Applied and Environmental Microbiology, 2008, 74, 1243-1249.	3.1	19
131	Question the questions on CPAF. Pathogens and Disease, 2014, 72, 3-4.	2.0	19
132	Chlamydia muridarum Induction of Glandular Duct Dilation in Mice. Infection and Immunity, 2015, 83, 2327-2337.	2.2	19
133	Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence. Current Topics in Microbiology and Immunology, 2017, 412, 133-158.	1.1	19
134	Localization of the Hypothetical Protein Cpn0797 in the Cytoplasm of Chlamydia pneumoniae -Infected Host Cells. Infection and Immunity, 2006, 74, 6479-6486.	2.2	17
135	The Chlamydia pneumoniae Inclusion Membrane Protein Cpn1027 Interacts with Host Cell Wnt Signaling Pathway Regulator Cytoplasmic Activation/Proliferation-Associated Protein 2 (Caprin2). PLoS ONE, 2015, 10, e0127909.	2.5	17
136	Intrauterine Infection with Plasmid-Free Chlamydia muridarum Reveals a Critical Role of the Plasmid in Chlamydial Ascension and Establishes a Model for Evaluating Plasmid-Independent Pathogenicity. Infection and Immunity, 2015, 83, 2583-2592.	2.2	17
137	Transcervical Inoculation with Chlamydia trachomatis Induces Infertility in HLA-DR4 Transgenic and Wild-Type Mice. Infection and Immunity, 2018, 86, .	2.2	17
138	Distinct Roles of Chromosome- versus Plasmid-Encoded Genital Tract Virulence Factors in Promoting Chlamydia muridarum Colonization in the Gastrointestinal Tract. Infection and Immunity, 2019, 87, .	2.2	17
139	Chlamydia overcomes multiple gastrointestinal barriers to achieve long-lasting colonization. Trends in Microbiology, 2021, 29, 1004-1012.	7.7	17
140	Identification of a Novel Nuclear Localization Signal Sequence in Chlamydia trachomatis-Secreted Hypothetical Protein CT311. PLoS ONE, 2013, 8, e64529.	2.5	17
141	Innate Lymphoid Cells Are Required for Endometrial Resistance to <i>Chlamydia trachomatis</i> Infection. Infection and Immunity, 2020, 88, .	2.2	16
142	Adoptive Transfer of Group 3-Like Innate Lymphoid Cells Restores Mouse Colon Resistance to Colonization of a Gamma Interferon-Susceptible Chlamydia muridarum Mutant. Infection and Immunity, 2021, 89, .	2.2	16
143	Chlamydia muridarum Induces Pathology in the Female Upper Genital Tract via Distinct Mechanisms. Infection and Immunity, 2019, 87, .	2.2	15
144	Antigen-Specific CD4 ⁺ T Cell-Derived Gamma Interferon Is Both Necessary and Sufficient for Clearing <i>Chlamydia</i> from the Small Intestine but Not the Large Intestine. Infection and Immunity, 2019, 87, .	2.2	15

#	Article	IF	CITATIONS
145	Hypothetical Protein Cpn0308 Is Localized in the Chlamydia pneumoniae Inclusion Membrane. Infection and Immunity, 2007, 75, 497-503.	2.2	14
146	Use of a Guinea Pig-Specific Transcriptome Array for Evaluation of Protective Immunity against Genital Chlamydial Infection following Intranasal Vaccination in Guinea Pigs. PLoS ONE, 2014, 9, e114261.	2.5	14
147	Heat-inactivated C. pneumoniae organisms are not atherogenic. Molecular and Cellular Biochemistry, 2004, 260, 147-152.	3.1	13
148	Localization of the hypothetical protein Cpn0585 in the inclusion membrane of Chlamydia pneumoniae-infected cells. Microbial Pathogenesis, 2007, 42, 111-116.	2.9	13
149	The p47phox deficiency significantly attenuates the pathogenicity of Chlamydia muridarum in the mouse oviduct but not uterine tissues. Microbes and Infection, 2016, 18, 190-198.	1.9	13
150	Gastrointestinal Coinfection Promotes Chlamydial Pathogenicity in the Genital Tract. Infection and Immunity, 2020, 88, .	2.2	13
151	Immunodominant Regions of a <i>Chlamydia trachomatis</i> Type III Secretion Effector Protein, Tarp. Vaccine Journal, 2010, 17, 1371-1376.	3.1	12
152	Evasion of Innate Lymphoid Cell-Regulated Gamma Interferon Responses by Chlamydia muridarum To Achieve Long-Lasting Colonization in Mouse Colon. Infection and Immunity, 2020, 88, .	2.2	12
153	<i>Chlamydia</i> Deficient in Plasmid-Encoded pGP3 Is Prevented from Spreading to Large Intestine. Infection and Immunity, 2020, 88, .	2.2	12
154	Effect of host fatty acid-binding protein and fatty acid uptake on growth of Chlamydia trachomatis L2. Microbiology (United Kingdom), 2007, 153, 1935-1939.	1.8	11
155	The Cryptic Plasmid Improves Chlamydia Fitness in Different Regions of the Gastrointestinal Tract. Infection and Immunity, 2020, 88, .	2.2	10
156	Chlamydia Deficient in Plasmid-Encoded Glycoprotein 3 (pGP3) as an Attenuated Live Oral Vaccine. Infection and Immunity, 2022, 90, IAl0047221.	2.2	10
157	Evidence for cGAS-STING Signaling in the Female Genital Tract Resistance to Chlamydia trachomatis Infection. Infection and Immunity, 2022, 90, iai0067021.	2.2	10
158	An optimized, fast-to-perform mouse lung infection model with the human pathogen <i>Chlamydia trachomatis</i> for <i>in vivo</i> screening of antibiotics, vaccine candidates and modified host–pathogen interactions. Pathogens and Disease, 2016, 74, ftv120.	2.0	9
159	Regulation of <i>Chlamydia</i> spreading from the small intestine to the large intestine via an immunological barrier. Immunology and Cell Biology, 2021, 99, 611-621.	2.3	9
160	<i>Chlamydia</i> Spreads to the Large Intestine Lumen via Multiple Pathways. Infection and Immunity, 2021, 89, e0025421.	2.2	6
161	Rottlerin-Mediated Inhibition of Chlamydia trachomatis Growth and Uptake of Sphingolipids Is Independent of p38-Regulated/Activated Protein Kinase (PRAK). PLoS ONE, 2012, 7, e44733.	2.5	5
162	Uterotubal junction prevents chlamydial ascension via innate immunity. PLoS ONE, 2017, 12, e0183189.	2.5	5

#	Article	IF	CITATIONS
163	Effects of Immunomodulatory Drug Fingolimod (FTY720) on Chlamydia Dissemination and Pathogenesis. Infection and Immunity, 2020, 88, .	2.2	5
164	Gastrointestinal Chlamydia-Induced CD8 ⁺ T Cells Promote Chlamydial Pathogenicity in the Female Upper Genital Tract. Infection and Immunity, 2021, 89, e0020521.	2.2	5
165	Chlamydia-Secreted Proteins in Chlamydial Interactions with Host Cells. Current Chemical Biology, 2011, 5, 29-37.	0.5	4
166	Localization and characterization of the hypothetical protein CT440 in Chlamydia trachomatis-infected cells. Science China Life Sciences, 2011, 54, 1048-1054.	4.9	4
167	Guinea pig genital tract lipidome reveals in vivo and in vitro regulation of phosphatidylcholine 16:0/18:1 and contribution to Chlamydia trachomatis serovar D infectivity. Metabolomics, 2016, 12, 1.	3.0	4
168	Chlamydial proteaseâ€like activity factor mediated protection againstC. trachomatisin guinea pigs. Immunology and Cell Biology, 2017, 95, 454-460.	2.3	4
169	Chlamydia-Secreted Proteins in Chlamydial Interactions with Host Cells. Current Chemical Biology, 2011, 5, 29-37.	0.5	4
170	IgA modulates respiratory dysfunction as a sequela to pulmonary chlamydial infection as neonates. Pathogens and Disease, 2016, 74, ftv121.	2.0	3
171	Suppression of Chlamydial Pathogenicity by Nonspecific CD8 ⁺ T Lymphocytes. Infection and Immunity, 2020, 88, .	2.2	3
172	Mapping immunodominant antigens and H-2-linked antibody responses in mice urogenitally infected with Chlamydia muridarum. Microbes and Infection, 2012, 14, 659-665.	1.9	2
173	The role of an enzymatically inactive CPAF mutant vaccination in Chlamydia muridarum genital tract infection. Microbial Pathogenesis, 2021, 160, 105137.	2.9	2
174	Animal Models of Chlamydia trachomatis Infection. , 2020, , .		2
175	Characterization of Pathogenic CD8 ⁺ T cells in Chlamydia-Infected OT1 Mice. Infection and Immunity, 2022, 90, IAI0045321.	2.2	2
176	Chlamydia trachomatis. , 2015, , 1449-1469.		1
177	A primary study on genes with selected mutations by in vitro passage of Chlamydia muridarum strains. Pathogens and Disease, 2019, 77, .	2.0	1
178	Proteome array of antibody responses to Chlamydia trachomatis infection in nonhuman primates. Life Sciences, 2020, 248, 117444.	4.3	1
179	Chlamydia Vaccine: Progress and Challenges. , 0, , 311-333.		1
180	Effectiveness of Platelet-Rich Plasma in the Prevention of Chlamydia-Induced Hydrosalpinx in a Murine Model. Reproductive Sciences, 2021, 28, 1031-1040.	2.5	0

#	Article	IF	CITATIONS
181	Chlamydial Protease/Proteasome-Like Activity Factor. , 2013, , 3616-3623.		ο
182	Interleukin-27 (IL-27) Promotes Chlamydial Infection in the Female Genital Tract. Infection and Immunity, 2022, , e0065121.	2.2	0