List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/982642/publications.pdf Version: 2024-02-01

		22099	22102
114	19,162	59	113
papers	citations	h-index	g-index
121	121	121	20668
all docs	docs citations	times ranked	citing authors

ALAN SHED

#	Article	IF	CITATIONS
1	Type I interferons in infectious disease. Nature Reviews Immunology, 2015, 15, 87-103.	10.6	1,902
2	Vaccine Adjuvants: Putting Innate Immunity to Work. Immunity, 2010, 33, 492-503.	6.6	1,522
3	TLR11 Activation of Dendritic Cells by a Protozoan Profilin-Like Protein. Science, 2005, 308, 1626-1629.	6.0	862
4	In Vivo Microbial Stimulation Induces Rapid CD40 Ligand–independent Production of Interleukin 12 by Dendritic Cells and their Redistribution to T Cell Areas. Journal of Experimental Medicine, 1997, 186, 1819-1829.	4.2	836
5	Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature, 2014, 511, 99-103.	13.7	650
6	Conventional T-bet+Foxp3â^' Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. Journal of Experimental Medicine, 2007, 204, 273-283.	4.2	539
7	CD40 Triggering of Heterodimeric IL-12 p70 Production by Dendritic Cells In Vivo Requires a Microbial Priming Signal. Immunity, 2000, 13, 453-462.	6.6	507
8	Cutting Edge: MyD88 Is Required for Resistance to <i>Toxoplasma gondii</i> Infection and Regulates Parasite-Induced IL-12 Production by Dendritic Cells. Journal of Immunology, 2002, 168, 5997-6001.	0.4	442
9	Cutting Edge: Caspase-1 Independent IL-1β Production Is Critical for Host Resistance to <i>Mycobacterium tuberculosis</i> and Does Not Require TLR Signaling In Vivo. Journal of Immunology, 2010, 184, 3326-3330.	0.4	435
10	<i>Helicobacter hepaticus</i> Triggers Colitis in Specific-Pathogen-Free Interleukin-10 (IL-10)-Deficient Mice through an IL-12- and Gamma Interferon-Dependent Mechanism. Infection and Immunity, 1998, 66, 5157-5166.	1.0	416
11	Inducible Nitric Oxide Is Essential for Host Control of Persistent but Not Acute Infection with the Intracellular Pathogen Toxoplasma gondii. Journal of Experimental Medicine, 1997, 185, 1261-1274.	4.2	415
12	Innate and Adaptive Interferons Suppress IL-1α and IL-1β Production by Distinct Pulmonary Myeloid Subsets during Mycobacterium tuberculosis Infection. Immunity, 2011, 35, 1023-1034.	6.6	379
13	Requirement for Tec Kinases Rlk and Itk in T Cell Receptor Signaling and Immunity. Science, 1999, 284, 638-641.	6.0	373
14	CD8α+ Dendritic Cells Are the Critical Source of Interleukin-12 that Controls Acute Infection by Toxoplasma gondii Tachyzoites. Immunity, 2011, 35, 249-259.	6.6	334
15	Toxoplasma Profilin Is Essential for Host Cell Invasion and TLR11-Dependent Induction of an Interleukin-12 Response. Cell Host and Microbe, 2008, 3, 77-87.	5.1	320
16	CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nature Immunology, 2000, 1, 83-87.	7.0	317
17	Inactivation of Lrg-47 and Irg-47 Reveals a Family of Interferon γ–Inducible Genes with Essential, Pathogen-Specific Roles in Resistance to Infection. Journal of Experimental Medicine, 2001, 194, 181-188.	4.2	311
18	Bacteria-triggered CD4+ T Regulatory Cells Suppress Helicobacter hepaticus–induced Colitis. Journal of Experimental Medicine, 2002, 196, 505-515.	4.2	299

#	Article	IF	CITATIONS
19	Recognition of Profilin by Toll-like Receptor 12 Is Critical for Host Resistance to Toxoplasma gondii. Immunity, 2013, 38, 119-130.	6.6	279
20	Cutting Edge: IL-12 Is Required for the Maintenance of IFN-Î ³ Production in T Cells Mediating Chronic Resistance to the Intracellular Pathogen, <i>Toxoplasma gondii</i> . Journal of Immunology, 2000, 165, 628-631.	0.4	270
21	CD4 T Cells Promote Rather than Control Tuberculosis in the Absence of PD-1–Mediated Inhibition. Journal of Immunology, 2011, 186, 1598-1607.	0.4	269
22	The role of dendritic cells in the induction and regulation of immunity to microbial infection. Current Opinion in Immunology, 1999, 11, 392-399.	2.4	260
23	Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. Journal of Clinical Investigation, 2010, 120, 1674-1682.	3.9	259
24	Dual Role for Inflammasome Sensors NLRP1 and NLRP3 in Murine Resistance to Toxoplasma gondii. MBio, 2014, 5, .	1.8	244
25	NK Cell-Derived Interferon- \hat{l}^3 Orchestrates Cellular Dynamics and the Differentiation of Monocytes into Dendritic Cells at the Site of Infection. Immunity, 2012, 36, 1047-1059.	6.6	239
26	Host control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase–dependent lipoxin production. Journal of Clinical Investigation, 2005, 115, 1601-1606.	3.9	235
27	Single Cell Analysis Reveals That IL-4 Receptor/Stat6 Signaling Is Not Required for the In Vivo or In Vitro Development of CD4+ Lymphocytes with a Th2 Cytokine Profile. Journal of Immunology, 2000, 164, 3047-3055.	0.4	232
28	In the Absence of IL-12, CD4+ T Cell Responses to Intracellular Pathogens Fail to Default to a Th2 Pattern and Are Host Protective in an IL-10â^'/â^' Setting. Immunity, 2002, 16, 429-439.	6.6	232
29	A major role for ferroptosis in <i>Mycobacterium tuberculosis</i> –induced cell death and tissue necrosis. Journal of Experimental Medicine, 2019, 216, 556-570.	4.2	231
30	<i>Mycobacterium tuberculosis</i> Triggers Host Type I IFN Signaling To Regulate IL-1Î ² Production in Human Macrophages. Journal of Immunology, 2011, 187, 2540-2547.	0.4	229
31	Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nature Immunology, 2003, 4, 485-490.	7.0	215
32	Effector Cells of Both Nonhemopoietic and Hemopoietic Origin Are Required for Interferon (IFN)-γ– and Tumor Necrosis Factor (TNF)-α–dependent Host Resistance to the Intracellular Pathogen, Toxoplasma gondii. Journal of Experimental Medicine, 1999, 189, 1083-1092.	4.2	214
33	Cell-mediated Immunity to Toxoplasma Gondii: Initiation, Regulation and Effector Function. Immunobiology, 1999, 201, 240-247.	0.8	200
34	Interferon Consensus Sequence Binding Protein–deficient Mice Display Impaired Resistance to Intracellular Infection Due to a Primary Defect in Interleukin 12 p40 Induction. Journal of Experimental Medicine, 1997, 186, 1523-1534.	4.2	196
35	Parasite-induced Lipoxin A4 Is an Endogenous Regulator of IL-12 Production and Immunopathology in Toxoplasma gondii Infection. Journal of Experimental Medicine, 2002, 196, 1253-1262.	4.2	193
36	Type I interferons in tuberculosis: Foe and occasionally friend. Journal of Experimental Medicine, 2018, 215, 1273-1285.	4.2	187

#	Article	IF	CITATIONS
37	Paralysis of Dendritic Cell IL-12 Production by Microbial Products Prevents Infection-Induced Immunopathology. Immunity, 1999, 11, 637-647.	6.6	171
38	Cutting Edge: Endoplasmic Reticulum Stress Licenses Macrophages To Produce Mature IL-1β in Response to TLR4 Stimulation through a Caspase-8– and TRIF-Dependent Pathway. Journal of Immunology, 2014, 192, 2029-2033.	0.4	149
39	Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Scientific Reports, 2017, 7, 10767.	1.6	148
40	Helicobacter hepaticus-Induced Colitis in Interleukin-10-Deficient Mice: Cytokine Requirements for the Induction and Maintenance of Intestinal Inflammation. Infection and Immunity, 2001, 69, 4232-4241.	1.0	129
41	Cytokine and lipid mediator networks in tuberculosis. Immunological Reviews, 2015, 264, 264-275.	2.8	128
42	Influenza A Virus Impairs Control of Mycobacterium tuberculosis Coinfection Through a Type I Interferon Receptor–Dependent Pathway. Journal of Infectious Diseases, 2014, 209, 270-274.	1.9	123
43	Innate Resistance against Toxoplasma gondii: An Evolutionary Tale of Mice, Cats, and Men. Cell Host and Microbe, 2014, 15, 132-138.	5.1	121
44	Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 2017, 5, 71.	4.9	117
45	Cord Factor and Peptidoglycan Recapitulate the Th17-Promoting Adjuvant Activity of Mycobacteria through Mincle/CARD9 Signaling and the Inflammasome. Journal of Immunology, 2013, 190, 5722-5730.	0.4	112
46	Mycobacterial Antigen Driven Activation of CD14++CD16â^' Monocytes Is a Predictor of Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. PLoS Pathogens, 2014, 10, e1004433.	2.1	111
47	Shaping the immune response to parasites: role of dendritic cells. Current Opinion in Immunology, 2003, 15, 421-429.	2.4	104
48	Induction and Regulation of IL-12-Dependent Host Resistance to Toxoplasma gondii. Immunologic Research, 2003, 27, 521-528.	1.3	96
49	<i>Toxoplasma gondii</i> Triggers Myeloid Differentiation Factor 88-Dependent IL-12 and Chemokine Ligand 2 (Monocyte Chemoattractant Protein 1) Responses Using Distinct Parasite Molecules and Host Receptors. Journal of Immunology, 2004, 172, 6954-6960.	0.4	95
50	Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy. Science Translational Medicine, 2017, 9, .	5.8	94
51	Exogenous Pathogen and Plant 15-Lipoxygenase Initiate Endogenous Lipoxin A4 Biosynthesis. Journal of Experimental Medicine, 2004, 199, 515-523.	4.2	89
52	N-acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions. BMC Microbiology, 2016, 16, 251.	1.3	88
53	Induction of colitis by a CD4+ T cell clone specific for a bacterial epitope. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15830-15835.	3.3	83
54	Th1/Th2 effector choice in parasitic infection: decision making by committee. Current Opinion in Immunology, 2001, 13, 403-409.	2.4	78

#	Article	IF	CITATIONS
55	TAP-1 indirectly regulates CD4+ T cell priming in <i>Toxoplasma gondii</i> infection by controlling NK cell IFN-γ production. Journal of Experimental Medicine, 2007, 204, 2591-2602.	4.2	77
56	The IL-12 Response of Primary Human Dendritic Cells and Monocytes to <i>Toxoplasma gondii</i> Is Stimulated by Phagocytosis of Live Parasites Rather Than Host Cell Invasion. Journal of Immunology, 2016, 196, 345-356.	0.4	77
57	Lysosomal Cathepsin Release Is Required for NLRP3-Inflammasome Activation by Mycobacterium tuberculosis in Infected Macrophages. Frontiers in Immunology, 2018, 9, 1427.	2.2	77
58	The Microbiome and Tuberculosis: Early Evidence for Cross Talk. MBio, 2018, 9, .	1.8	71
59	Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis. Nature Immunology, 2020, 21, 464-476.	7.0	71
60	Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nature Reviews Immunology, 2023, 23, 121-133.	10.6	71
61	PD-1 blockade exacerbates <i>Mycobacterium tuberculosis</i> infection in rhesus macaques. Science Immunology, 2021, 6, .	5.6	70
62	Transient T-bet expression functionally specifies a distinct T follicular helper subset. Journal of Experimental Medicine, 2018, 215, 2705-2714.	4.2	68
63	Memory-phenotype CD4 ⁺ T cells spontaneously generated under steady-state conditions exert innate T _H 1-like effector function. Science Immunology, 2017, 2, .	5.6	65
64	Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases. Nature Communications, 2019, 10, 2887.	5.8	65
65	Intravenous administration of BCG protects mice against lethal SARS-CoV-2 challenge. Journal of Experimental Medicine, 2022, 219, .	4.2	62
66	Chitosan: An Adjuvant with an Unanticipated STING. Immunity, 2016, 44, 522-524.	6.6	61
67	Homeostatic IL-13 in healthy skin directs dendritic cell differentiation to promote TH2 and inhibit TH17 cell polarization. Nature Immunology, 2021, 22, 1538-1550.	7.0	61
68	Cutting Edge: In Vivo Induction of Integrated HIV-1 Expression by Mycobacteria Is Critically Dependent on Toll-Like Receptor 2. Journal of Immunology, 2003, 171, 1123-1127.	0.4	58
69	Plasma Heme Oxygenase-1 Levels Distinguish Latent or Successfully Treated Human Tuberculosis from Active Disease. PLoS ONE, 2013, 8, e62618.	1.1	58
70	Adjuvant and carrier protein-dependent T-cell priming promotes a robust antibody response against the Plasmodium falciparum Pfs25 vaccine candidate. Scientific Reports, 2017, 7, 40312.	1.6	54
71	Innate recognition of Toxoplasma gondii in humans involves a mechanism distinct from that utilized by rodents. Cellular and Molecular Immunology, 2017, 14, 36-42.	4.8	52
72	Heme Oxygenase-1 Regulation of Matrix Metalloproteinase-1 Expression Underlies Distinct Disease Profiles in Tuberculosis. Journal of Immunology, 2015, 195, 2763-2773.	0.4	50

#	Article	IF	CITATIONS
73	CD4+ T cells are trigger and target of the glucocorticoid response that prevents lethal immunopathology in toxoplasma infection. Journal of Experimental Medicine, 2013, 210, 1919-1927.	4.2	44
74	Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection <i>In Vivo</i> by a Mechanism Dependent on T Lymphocytes. MBio, 2016, 7, .	1.8	44
75	Persistent Oxidative Stress and Inflammasome Activation in CD14highCD16â^' Monocytes From COVID-19 Patients. Frontiers in Immunology, 2021, 12, 799558.	2.2	44
76	Dendritic Cell Activation Prevents MHC Class II Ubiquitination and Promotes MHC Class II Survival Regardless of the Activation Stimulus. Journal of Biological Chemistry, 2010, 285, 41749-41754.	1.6	43
77	Inhibition of HIV-1 infection by a CCR5-binding cyclophilin from Toxoplasma gondii. Blood, 2003, 102, 3280-3286.	0.6	42
78	Turning it on and off: regulation of dendritic cell function in Toxoplasma gondii infection. Immunological Reviews, 2004, 201, 26-34.	2.8	42
79	In VivoAntiviral Activity of Novel Human Immunodeficiency Virus Type 1 Nucleocapsid p7 Zinc Finger Inhibitors in a Transgenic Murine Model. AIDS Research and Human Retroviruses, 2003, 19, 91-101.	0.5	39
80	Mycobacterium tuberculosis Induction of Heme Oxygenase-1 Expression Is Dependent on Oxidative Stress and Reflects Treatment Outcomes. Frontiers in Immunology, 2017, 8, 542.	2.2	37
81	Water-in-Oil–Only Adjuvants Selectively Promote T Follicular Helper Cell Polarization through a Type I IFN and IL-6–Dependent Pathway. Journal of Immunology, 2016, 197, 3884-3893.	0.4	35
82	Molecular degree of perturbation of plasma inflammatory markers associated with tuberculosis reveals distinct disease profiles between Indian and Chinese populations. Scientific Reports, 2019, 9, 8002.	1.6	33
83	Mycobacterium tuberculosis-specific CD4 T cells expressing CD153 inversely associate with bacterial load and disease severity in human tuberculosis. Mucosal Immunology, 2021, 14, 491-499.	2.7	33
84	The lectin-specific activity of Toxoplasma gondii microneme proteins 1 and 4 binds Toll-like receptor 2 and 4 N-glycans to regulate innate immune priming. PLoS Pathogens, 2019, 15, e1007871.	2.1	29
85	Correlation between Disease Severity and the Intestinal Microbiome in Mycobacterium tuberculosis-Infected Rhesus Macaques. MBio, 2019, 10, .	1.8	29
86	Malaria Infection Induces Virus Expression in Human Immunodeficiency Virus Transgenic Mice by CD4 T Cell–Dependent Immune Activation. Journal of Infectious Diseases, 2001, 183, 1260-1268.	1.9	28
87	A partial form of inherited human USP18 deficiency underlies infection and inflammation. Journal of Experimental Medicine, 2022, 219, .	4.2	28
88	Cathepsin K Contributes to Cavitation and Collagen Turnover in Pulmonary Tuberculosis. Journal of Infectious Diseases, 2016, 213, 618-627.	1.9	27
89	The induction of Toll-like receptor tolerance enhances rather than suppresses HIV-1 gene expression in transgenic mice. Journal of Leukocyte Biology, 2004, 75, 460-466.	1.5	25
90	Structural Determinants of the Anti-HIV Activity of a CCR5 Antagonist Derived from Toxoplasma gondii. Journal of Biological Chemistry, 2004, 279, 53635-53642.	1.6	24

#	Article	IF	CITATIONS
91	Functional inactivation of pulmonary MAIT cells following 5-OP-RU treatment of non-human primates. Mucosal Immunology, 2021, 14, 1055-1066.	2.7	23
92	Heme oxygenase-1 inhibition promotes IFNγ- and NOS2-mediated control of Mycobacterium tuberculosis infection. Mucosal Immunology, 2021, 14, 253-266.	2.7	22
93	Mycobacterium tuberculosis Induces Irg1 in Murine Macrophages by a Pathway Involving Both TLR-2 and STING/IFNAR Signaling and Requiring Bacterial Phagocytosis. Frontiers in Cellular and Infection Microbiology, 2022, 12, 862582.	1.8	22
94	Systemic toxoplasma infection triggers a long-term defect in the generation and function of naive T lymphocytes. Journal of Experimental Medicine, 2016, 213, 3041-3056.	4.2	20
95	In Vivo CD40-CD154 (CD40 Ligand) Interaction Induces Integrated HIV Expression by APC in an HIV-1-Transgenic Mouse Model. Journal of Immunology, 2001, 166, 3210-3217.	0.4	19
96	Modulation of Inflammation and Immune Responses by Heme Oxygenase-1: Implications for Infection with Intracellular Pathogens. Antioxidants, 2020, 9, 1205.	2.2	18
97	Dermal IRF4+ dendritic cells and monocytes license CD4+ T helper cells to distinct cytokine profiles. Nature Communications, 2020, 11, 5637.	5.8	18
98	A Human Immunodeficiency Virus–Transgenic Mouse Model for Assessing Interventions that Block Microbialâ€Induced Proviral Expression. Journal of Infectious Diseases, 2001, 183, 1592-1600.	1.9	17
99	Foreign antigen-independent memory-phenotype CD4+ T cells: a new player in innate immunity?. Nature Reviews Immunology, 2018, 18, 1-1.	10.6	17
100	Mild SARS-CoV-2 infection in rhesus macaques is associated with viral control prior to antigen-specific T cell responses in tissues. Science Immunology, 2022, 7, eabo0535.	5.6	17
101	Requirements for the differentiation of innate T-bethigh memory-phenotype CD4+ T lymphocytes under steady state. Nature Communications, 2020, 11, 3366.	5.8	16
102	Patients infected with Mycobacterium africanum versus Mycobacterium tuberculosis possess distinct intestinal microbiota. PLoS Neglected Tropical Diseases, 2020, 14, e0008230.	1.3	14
103	Viral Gene Expression in HIV Transgenic Mice Is Activated byMycobacterium tuberculosisand Suppressed after Antimycobacterial Chemotherapy. Journal of Infectious Diseases, 2007, 195, 246-254.	1.9	11
104	Differential regulation of transcription factor T-bet induction during NK cell development and T helper-1 cell differentiation. Immunity, 2022, 55, 639-655.e7.	6.6	11
105	Initiation and Regulation of CD4+ T-Cell Function in Host-Parasite Models (Part 1 of 2). Chemical Immunology and Allergy, 1996, 63, 51-58.	1.7	7
106	Memory-phenotype CD4+ T cells: a naturally arising T lymphocyte population possessing innate immune function. International Immunology, 2022, 34, 189-196.	1.8	7
107	Redefining the Foreign Antigen and Self-Driven Memory CD4+ T-Cell Compartments via Transcriptomic, Phenotypic, and Functional Analyses. Frontiers in Immunology, 2022, 13, .	2.2	6
108	Effector and Regulatory CD4+ T Cell Function in a Murine Model of Helicobacter hepaticus-Induced Colitis. Journal of Pediatric Gastroenterology and Nutrition, 2005, 40, S35-S36.	0.9	3

#	Article	IF	CITATIONS
109	A Long-Acting Thermoresponsive Injectable Formulation of Tin Protoporphyrin Sustains Antitubercular Efficacy in a Murine Infection Model. ACS Pharmacology and Translational Science, 2021, 4, 276-287.	2.5	3
110	Comment on: Repositioning TH cell polarization from single cytokines to complex help. Nature Immunology, 2022, 23, 501-502.	7.0	3
111	The Colon as a Major Site of Immunoregulation by CD4+ T Cell Subsets in the Steady State. Journal of Immunology, 2019, 203, 1683-1684.	0.4	2
112	IFNs Reset the Differential Capacity of Human Monocyte Subsets to Produce IL-12 in Response to Microbial Stimulation. Journal of Immunology, 2021, 206, 1642-1652.	0.4	2
113	Enhancement of CD4+ T Cell Function as a Strategy for Improving Antibiotic Therapy Efficacy in Tuberculosis: Does It Work?. Frontiers in Cellular and Infection Microbiology, 2021, 11, 672527.	1.8	2
114	Sterilizing immunity: New opportunities for rational TB vaccine design. Journal of Experimental Medicine, 2021, 218, .	4.2	0