
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/982617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A crop phenology detection method using time-series MODIS data. Remote Sensing of Environment, 2005, 96, 366-374.	11.0	698
2	Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agricultural and Forest Meteorology, 2006, 138, 82-92.	4.8	468
3	Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sensing of Environment, 2007, 109, 295-313.	11.0	349
4	Climate–crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Research, 2008, 38, 83-94.	1.1	305
5	Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 2014, 5, 3712.	12.8	273
6	Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sensing of Environment, 2006, 100, 1-16.	11.0	216
7	Global warming, rice production, and water use in China: Developing a probabilistic assessment. Agricultural and Forest Meteorology, 2008, 148, 94-110.	4.8	210
8	Modelling the impacts of weather and climate variability on crop productivity over a large area: A new process-based model development, optimization, and uncertainties analysis. Agricultural and Forest Meteorology, 2009, 149, 831-850.	4.8	172
9	Assessing the impacts of climate change on rice yields in the main rice areas of China. Climatic Change, 2007, 80, 395-409.	3.6	167
10	Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach. Agricultural and Forest Meteorology, 2009, 149, 333-348.	4.8	165
11	Future climate change, the agricultural water cycle, and agricultural production in China. Agriculture, Ecosystems and Environment, 2003, 95, 203-215.	5.3	150
12	Prediction of seasonal climate-induced variations in global food production. Nature Climate Change, 2013, 3, 904-908.	18.8	143
13	Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemble-based probabilistic projection. Agricultural and Forest Meteorology, 2009, 149, 1266-1278.	4.8	127
14	Changes in agricultural water demands and soil moisture in China over the last half-century and their effects on agricultural production. Agricultural and Forest Meteorology, 2003, 118, 251-261.	4.8	115
15	Historical changes in global yields: major cereal and legume crops from 1982 to 2006. Clobal Ecology and Biogeography, 2014, 23, 346-357.	5.8	115
16	Remote sensing of crop production in China by production efficiency models: models comparisons, estimates and uncertainties. Ecological Modelling, 2005, 183, 385-396.	2.5	96
17	How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields. Population Ecology, 2006, 48, 31-48.	1.2	96
18	In Silico Simulation Modeling Reveals the Importance of the Casparian Strip for Efficient Silicon Uptake in Rice Roots. Plant and Cell Physiology, 2015, 56, 631-639.	3.1	91

#	Article	IF	CITATIONS
19	Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery. Landscape and Urban Planning, 2009, 92, 34-46.	7.5	84
20	Variability in climatology and agricultural production in China in association with the East Asian summer monsoon and El Niño Southern Oscillation. Climate Research, 2004, 28, 23-30.	1.1	80
21	Evaluation and intercomparison of downscaled daily precipitation indices over Japan in present-day climate: Strengths and weaknesses of dynamical and bias correction-type statistical downscaling methods. Journal of Geophysical Research, 2011, 116, .	3.3	75
22	Acid hydrolysis to partition plant material into decomposable and resistant fractions for use in the Rothamsted carbon model. Soil Biology and Biochemistry, 2006, 38, 812-816.	8.8	70
23	A Canopy Photosynthesis Model for the Dynamics of Size Structure and Self-thinning in Plant Populations. Annals of Botany, 1992, 70, 305-316.	2.9	68
24	Probabilistic evaluation of climate change impacts on paddy rice productivity in Japan. Climatic Change, 2011, 107, 391-415.	3.6	66
25	How much has the increase in atmospheric CO2 directly affected past soybean production?. Scientific Reports, 2014, 4, 4978.	3.3	54
26	Foliage Profile, Size Structure and Stem Diameter-Plant Height Relationship in Crowded Plant Populations. Annals of Botany, 1995, 76, 271-285.	2.9	51
27	Prediction of a geographical shift in the prevalence of rice stripe virus disease transmitted by the small brown planthopper, Laodelphax striatellus(Fallen)(Hemiptera: Delphacidae), under global warming Applied Entomology and Zoology, 2002, 37, 181-190.	1.2	49
28	Diurnal changes of carbon dioxide flux from bare soil in agricultural field in Japan. Applied Soil Ecology, 2002, 19, 161-171.	4.3	49
29	Use of the RothC model to estimate the carbon sequestration potential of organic matter application in Japanese arable soils. Soil Science and Plant Nutrition, 2010, 56, 168-176.	1.9	49
30	A Perspective on Water Resources in China: Interactions between Climate Change and Soil Degradation. Climatic Change, 2005, 68, 169-197.	3.6	46
31	Impact of Global Warming on Environments for Apple and Satsuma Mandarin Production Estimated from Changes of the Annual Mean Temperature. Journal of the Japanese Society for Horticultural Science, 2004, 73, 72-78.	0.5	45
32	Mesh Climate Change Data for Evaluating Climate Change Impacts in Japan under Gradually Increasing Atmospheric CO2 Concentration. J Agricultural Meteorology, 2003, 59, 117-130.	1.5	45
33	A chamber system with automatic opening and closing for continuously measuring soil respiration based on an open-flow dynamic method. Ecological Research, 2006, 21, 405-414.	1.5	43
34	Land surface phenology dynamics and climate variations in the North East China Transect (NECT), 1982–2000. International Journal of Remote Sensing, 2008, 29, 5461-5478.	2.9	43
35	Climate change, land use change, and China's food security in the twenty-first century: an integrated perspective. Climatic Change, 2009, 93, 433-445.	3.6	41
36	Sensitivity of Salinity Intrusion to Sea Level Rise and River Flow Change in Vietnamese Mekong Delta-Impacts on Availability of Irrigation Water for Rice Cropping. J Agricultural Meteorology, 2008, 64, 167-176.	1.5	40

#	Article	IF	CITATIONS
37	Introduction to climate change scenario derived by statistical downscaling. J Agricultural Meteorology, 2010, 66, 131-143.	1.5	40
38	Developing a Multilayered Integrated Numerical Model of Surface Physics - Growing Plants Interaction (MINoSGI). Global Change Biology, 2004, 10, 963-982.	9.5	39
39	Regional Consequences of Seawater Intrusion on Rice Productivity and Land Use in Coastal Area of the Mekong River Delta. Japan Agricultural Research Quarterly, 2008, 42, 267-274.	0.4	39
40	Applying the Rothamsted Carbon Model for Long-Term Experiments on Japanese Paddy Soils and Modifying It by Simple Tuning of the Decomposition Rate. Soil Science and Plant Nutrition, 2005, 51, 405-415.	1.9	36
41	Effects of competition mode on spatial pattern dynamics in plant communities. Ecological Modelling, 1998, 106, 1-16.	2.5	34
42	Changes in the Southwest Monsoon mean daily rainfall intensity in Sri Lanka: relationship to the El Niño–Southern Oscillation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197, 1-14.	2.3	34
43	Mesh Climate Change Data of Japan Ver.2 for Climate Change Impact Assessments Under IPCC SRES A1B and A2. J Agricultural Meteorology, 2009, 65, 97-109.	1.5	33
44	Testing the Rothamsted Carbon Model against data from long-term experiments on upland soils in Thailand. European Journal of Soil Science, 2005, 56, 179-188.	3.9	32
45	Varying temporal and spatial effects of climate on maize and soybean affect yield prediction. Climate Research, 2011, 49, 143-154.	1.1	31
46	Interclonal differences, plasticity and trade-offs of life history traits of Cyperus esculentus in relation to water availability. Plant Species Biology, 2001, 16, 193-207.	1.0	30
47	Agro-ecological Interpretation of Rice Cropping Systems in Flood-prone Areas using MODIS Imagery. Photogrammetric Engineering and Remote Sensing, 2009, 75, 413-424.	0.6	28
48	Effects of Physiological and Environmental Variations on Size-Structure Dynamics in Plant Populations. Annals of Botany, 1994, 73, 39-51.	2.9	27
49	Detection of Yearly Change in Farming Systems in the Vietnamese Mekong Delta from MODIS Time-Series Imagery. Japan Agricultural Research Quarterly, 2009, 43, 173-185.	0.4	26
50	Dependency of parameter values of a crop model on the spatial scale of simulation. Journal of Advances in Modeling Earth Systems, 2014, 6, 527-540.	3.8	26
51	Effects of competition mode on the spatial pattern dynamics of wave regeneration in subalpine tree stands. Ecological Modelling, 1999, 118, 73-86.	2.5	25
52	Terrestrial Water Cycle and the Impact of Climate Change. Ambio, 2003, 32, 295-301.	5.5	24
53	A modeling approach for assessing rice cropping cycle affected by flooding, salinity intrusion, and monsoon rains in the Mekong Delta, Vietnam. Paddy and Water Environment, 2014, 12, 343-354.	1.8	24
54	Crown Architecture and Species Coexistence in Plant Communities. Annals of Botany, 1996, 78, 437-447.	2.9	23

#	Article	IF	CITATIONS
55	Model analysis of the influence of gas diffusivity in soil on CO and H2uptake. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 919-933.	1.6	23
56	Estimation of the damage area due to tropical cyclones using fragility curves for paddy rice in Japan. Environmental Research Letters, 2012, 7, 014020.	5.2	23
57	Modeling irrigationâ€based climate change adaptation in agriculture: Model development and evaluation in Northeast China. Journal of Advances in Modeling Earth Systems, 2015, 7, 1409-1424.	3.8	23
58	Diagnostics of Climate Model Biases in Summer Temperature and Warm-Season Insolation for the Simulation of Regional Paddy Rice Yield in Japan. Journal of Applied Meteorology and Climatology, 2010, 49, 574-591.	1.5	20
59	Modeling the multiple effects of temperature and radiation on rice quality. Environmental Research Letters, 2011, 6, 034031.	5.2	20
60	Dangerous levels of climate change for agricultural production in China. Regional Environmental Change, 2011, 11, 41-48.	2.9	19
61	Combined Equations for Estimating Global Solar Radiation: Projection of Radiation Field over Japan under Global Warming Conditions by Statistical Downscaling. J Agricultural Meteorology, 2008, 64, 9-23.	1.5	19
62	Projecting climate change impacts both on rice quality and yield in Japan. J Agricultural Meteorology, 2011, 67, 285-295.	1.5	19
63	A Model of Silicon Dynamics in Rice: An Analysis of the Investment Efficiency of Si Transporters. Frontiers in Plant Science, 2017, 8, 1187.	3.6	18
64	Climate Change Impact on Rice Insurance Payouts in Japan. Journal of Applied Meteorology and Climatology, 2008, 47, 2265-2278.	1.5	17
65	Competition among plants can lead to an increase in aggregation of smaller plants around larger ones. Ecological Modelling, 2015, 301, 41-53.	2.5	17
66	Soil CO2 concentrations and their implications in conventional and no-tillage agricultural fields. J Agricultural Meteorology, 2009, 65, 141-149.	1.5	15
67	Is long-term climate change beneficial or harmful for rice total factor productivity in Japan: evidence from a panel data analysis. Paddy and Water Environment, 2014, 12, 213-225.	1.8	15
68	Impact of Global Warming on Rice Production in Japan Based on Five Coupled Atmosphere-Ocean GCMs. Scientific Online Letters on the Atmosphere, 2006, 2, 156-159.	1.4	15
69	A climatological analysis on the recent declining trend of rice quality in Japan. J Agricultural Meteorology, 2009, 65, 327-337.	1.5	14
70	Inversely estimating temperature sensitivity of soil carbon decomposition by assimilating a turnover model and long-term field data. Soil Biology and Biochemistry, 2012, 46, 191-199.	8.8	14
71	Foliage profiles of individual trees determine competition, self-thinning, biomass and NPP of a Cryptomeria japonica forest stand: A simulation study based on a stand-scale process-based forest model. Ecological Modelling, 2009, 220, 2272-2280.	2.5	13
72	Global versus local coupling models and theoretical stability analysis of size-structure dynamics in plant populations. Ecological Modelling, 1999, 118, 61-72.	2.5	12

#	Article	IF	CITATIONS
73	Statistical downscaling with Bayesian inference: Estimating global solar radiation from reanalysis and limited observed data. International Journal of Climatology, 2012, 32, 464-480.	3.5	12
74	Impacts of landâ€use changes on surface warming rates and rice yield in Shikoku, western Japan. Geophysical Research Letters, 2012, 39, .	4.0	11
75	Contributions of historical changes in sowing date and climate to U.S. maize yield trend: An evaluation using large-area crop modeling and data assimilation. J Agricultural Meteorology, 2014, 70, 73-90.	1.5	11
76	<i>FluxPro</i> as a realtime monitoring and surveilling system for eddy covariance flux measurement. J Agricultural Meteorology, 2015, 71, 32-50.	1.5	10
77	Competition between the Néel and the Effective Singlet States in Spin-1/2 Alternating Heisenberg-Ising Antiferromagnet in One Dimension. Journal of the Physical Society of Japan, 1987, 56, 4126-4133.	1.6	10
78	Risk Analyses of Rice Yield to Seasonal Climate Variability in China. J Agricultural Meteorology, 2005, 60, 885-887.	1.5	9
79	Technological spillover in Japanese rice productivity under long-term climate change: evidence from the spatial econometric model. Paddy and Water Environment, 2016, 14, 131-144.	1.8	8
80	Concentrations of carbon monoxide and methane at two heights above a grass field and their deposition onto the field. Atmospheric Environment, 2000, 34, 5007-5014.	4.1	7
81	More asymmetric tree competition brings about more evapotranspiration and less runoff from the forest ecosystems: A simulation study. Ecological Modelling, 2010, 221, 2887-2898.	2.5	7
82	Microhabitat locality allows multi-species coexistence in terrestrial plant communities. Scientific Reports, 2015, 5, 15376.	3.3	7
83	Development of impact functions on regional paddy rice yield in Japan for integrated impact assessment models. J Agricultural Meteorology, 2009, 65, 179-190.	1.5	7
84	Impact of Global Warming on Broiler Meat Production Estimated from Changes of the Mean Ambient Temperature. Nihon Chikusan Gakkaiho, 2006, 77, 231-235.	0.2	7
85	Size Hierarchy and Stability in Competitive Plant Populations. Bulletin of Mathematical Biology, 1999, 61, 949-961.	1.9	6
86	Simulating the carbon balance of a temperate larch forest under various meteorological conditions. Carbon Balance and Management, 2007, 2, 6.	3.2	6
87	Variations in water resources in the Vietnamese Mekong Delta in response to climate change and their impacts on rice production. J Agricultural Meteorology, 2010, 66, 11-21.	1.5	6
88	An ensemble approach to the representation of subgrid-scale heterogeneity of crop phenology and yield in coarse-resolution large-area crop models. J Agricultural Meteorology, 2013, 69, 243-254.	1.5	6
89	Complex network analysis reveals novel essential properties of competition among individuals in an even-aged plant population. Ecological Complexity, 2016, 26, 95-116.	2.9	6
90	Tolerance of eddy covariance flux measurement. Hydrological Research Letters, 2011, 5, 73-77.	0.5	5

#	Article	IF	CITATIONS
91	Vertical soil–air CO2 dynamics at the Takayama deciduous broadleaved forest AsiaFlux site. Journal of Forest Research, 2013, 18, 49-59.	1.4	5
92	A Bayesian inversion framework to evaluate parameter and predictive inference of a simple soil respiration model in a cool-temperate forest in western Japan. Ecological Modelling, 2020, 418, 108918.	2.5	3
93	Influences of Climate Change and Spatial Dependence on Rice Total Factor Productivity: Evidence from Spatial Econometric Models. Studies in Regional Science, 2014, 44, 305-325.	0.1	3
94	Multivariate Statistical Analysis of the Seasonal Rainfall Regimes of the Guinea-Fouta Djallon Mountains of West Africa J Agricultural Meteorology, 2002, 58, 171-183.	1.5	3
95	The hot summers and rice in Japan. J Agricultural Meteorology, 2011, 67, 205-207.	1.5	3
96	Potential Predictability of Local Paddy Rice Yield Variation Using a Crop Model with Local Areal Information. Agricultural Information Research, 2010, 19, 36-42.	0.2	3
97	Inversely Estimating the Vertical Profile of the Soil CO2 Production Rate in a Deciduous Broadleaf Forest Using a Particle Filtering Method. PLoS ONE, 2015, 10, e0119001.	2.5	2
98	Indirect facilitation induced by competition among plants. Nonlinear Theory and Its Applications IEICE, 2016, 7, 126-145.	0.6	2
99	Evaluation of CO2 Exchange Rates in a Wetland Ecosystem Using the Closed Geosphere Experiment Facility. Journal of Hydrometeorology, 2012, 13, 966-980.	1.9	1
100	Effectively tuning plant growth models with different spatial complexity: A statistical perspective. Ecological Modelling, 2017, 361, 95-112.	2.5	1
101	Study of Cassette System for Linacography Using Computed Radiography : Application of a Heavy Metallic Sheet to the Metallic Plate. Japanese Journal of Radiological Technology, 1999, 55, 198-204.	0.1	1
102	Future Agricultural Water Resources and Agricultural Production in ChinaInteractions between Climate Change and Soil Degradation. J Agricultural Meteorology, 2005, 60, 1169-1174.	1.5	1
103	Terrestrial Water Cycle and the Impact of Climate Change. Ambio, 2003, 32, 295.	5.5	1
104	Applicability of empirical solar radiation models to altered climate. J Agricultural Meteorology, 2014, 70, 13-23.	1.5	0
105	A Canopy Photosynthesis Model for the Dynamics of Size Structure and the Competition Mode in Plant Populations. J Agricultural Meteorology, 1993, 48, 827-830.	1.5	0
106	A Weather Generator for the Prediction of Crop Yields under Changeable Climates. J Agricultural Meteorology, 1997, 52, 745-748.	1.5	0