Matteo Dainese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/982277/publications.pdf

Version: 2024-02-01

56 papers 4,665 citations

236925 25 h-index 53 g-index

63 all docs

63 docs citations

63 times ranked

7922 citing authors

#	Article	IF	CITATIONS
1	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	3.2	19
2	Ground cover vegetation promotes biological control and yield in pear orchards. Journal of Applied Entomology, 2022, 146, 262-271.	1.8	4
3	Spatial aggregation of herbivores and predators enhances triâ€trophic cascades in paddy fields: Rice monoculture versus riceâ€fish coâ€culture. Journal of Applied Ecology, 2022, 59, 2036-2045.	4.0	5
4	Archetype models upscale understanding of natural pest control response to landâ€use change. Ecological Applications, 2022, 32, .	3.8	11
5	Ecotrons: Powerful and versatile ecosystem analysers for ecology, agronomy and environmental science. Global Change Biology, 2021, 27, 1387-1407.	9.5	32
6	Networks of epiphytic lichens and host trees along elevation gradients: Climate change implications in mountain ranges. Journal of Ecology, 2021, 109, 1122-1132.	4.0	15
7	Decline of three farmland pest species in rapidly urbanizing landscapes. IScience, 2021, 24, 103002.	4.1	4
8	Models of natural pest control: Towards predictions across agricultural landscapes. Biological Control, 2021, 163, 104761.	3.0	22
9	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
10	Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and Biogeography, 2020, 29, 281-294.	5.8	21
11	Species traits elucidate crop pest response to landscape composition: a global analysis. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202116.	2.6	30
12	The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.	6.4	319
13	Global synthesis of effects of plant species diversity on trophic groups and interactions. Nature Plants, 2020, 6, 503-510.	9.3	83
14	Understanding the pathways from biodiversity to agro-ecological outcomes: A new, interactive approach. Agriculture, Ecosystems and Environment, 2020, 301, 107053.	5.3	32
15	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
16	Why does biodiversity matter for agriculture?. The Science Breaker, 2020, 06, .	0.0	0
17	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
18	Exploring patterns of betaâ€diversity to test the consistency of biogeographical boundaries: A case study across forest plant communities of Italy. Ecology and Evolution, 2019, 9, 11716-11723.	1.9	11

#	Article	IF	CITATIONS
19	Altitudinal Shift of Tetrao urogallus in an Alpine Natura 2000 Site: Implications for Habitat Restoration. Applied Sciences (Switzerland), 2019, 9, 1164.	2.5	5
20	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
21	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	5.8	49
22	Managing trapâ€nesting bees as crop pollinators: Spatiotemporal effects of floral resources and antagonists. Journal of Applied Ecology, 2018, 55, 195-204.	4.0	41
23	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	7.8	397
24	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
25	Landscape simplification weakens the association between terrestrial producer and consumer diversity in Europe. , $2018, $, .		0
26	Assembly patterns of soilâ€dwelling lichens after glacier retreat in the European Alps. Journal of Biogeography, 2017, 44, 1393-1404.	3.0	27
27	Landscape simplification weakens the association between terrestrial producer and consumer diversity in Europe. Global Change Biology, 2017, 23, 3040-3051.	9.5	28
28	Complementarity among natural enemies enhances pest suppression. Scientific Reports, 2017, 7, 8172.	3.3	58
29	Human disturbance and upward expansion of plants in a warming climate. Nature Climate Change, 2017, 7, 577-580.	18.8	97
30	High cover of hedgerows in the landscape supports multiple ecosystem services in <scp>M</scp> editerranean cereal fields. Journal of Applied Ecology, 2017, 54, 380-388.	4.0	86
31	Contrasting multi-taxa diversity patterns between abandoned and non-intensively managed forests in the southern Dolomites. IForest, 2017, 10, 845-850.	1.4	14
32	Landscape metrics as functional traits in plants: perspectives from a glacier foreland. PeerJ, 2017, 5, e3552.	2.0	5
33	Fine-scale population dynamics help to elucidate community assembly patterns of epiphytic lichens in alpine forests. Fungal Ecology, 2016, 24, 21-26.	1.6	4
34	Massâ€flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecology Letters, 2016, 19, 1228-1236.	6.4	195
35	Spillover of tachinids and hoverflies from different field margins. Basic and Applied Ecology, 2016, 17, 33-42.	2.7	17
36	Testing scaleâ€dependent effects of seminatural habitats on farmland biodiversity. Ecological Applications, 2015, 25, 1681-1690.	3.8	48

#	Article	IF	CITATIONS
37	Different effects of elevation, habitat fragmentation and grazing management on the functional, phylogenetic and taxonomic structure of mountain grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 44-53.	2.7	47
38	Environmental factors interact with spatial processes to determine herbaceous species richness in woody field margins. Plant Ecology, 2014, 215, 1323-1335.	1.6	7
39	Alien plant species distribution in the European Alps: influence of species' climatic requirements. Biological Invasions, 2014, 16, 815-831.	2.4	29
40	Capturing cross-scalar variation of habitat selection with grid sampling: an example with hazel grouse (Tetrastes bonasia L.). European Journal of Wildlife Research, 2014, 60, 177-186.	1.4	9
41	Topsoil organic matter properties in contrasted hedgerow vegetation types. Plant and Soil, 2014, 383, 337-348.	3.7	18
42	Epiphytic lichen conservation in the Italian Alps: the role of forest type. Fungal Ecology, 2014, 11, 164-172.	1.6	18
43	Patterns of traffic polycyclic aromatic hydrocarbon pollution in mountain areas can be revealed by lichen biomonitoring: A case study in the Dolomites (Eastern Italian Alps). Science of the Total Environment, 2014, 475, 90-96.	8.0	43
44	Assessing the influence of environmental gradients on seed mass variation in mountain grasslands using a spatial phylogenetic filtering approach. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 12-19.	2.7	24
45	Contrasting responses of epiphytic and dead wood-dwelling lichen diversity to forest management abandonment in silver fir mature woodlands. Forest Ecology and Management, 2013, 289, 325-332.	3.2	38
46	Do climate, resource availability, and grazing pressure filter floristic composition and functioning in Alpine pastures?. Community Ecology, 2012, 13, 45-54.	0.9	19
47	Plant species diversity in alien black locust stands: A paired comparison with native stands across a north-Mediterranean range expansion. Forest Ecology and Management, 2012, 285, 85-91.	3.2	70
48	Stand structure and plant species diversity in managed and abandoned silver fir mature woodlands. Forest Ecology and Management, 2012, 270, 232-238.	3.2	50
49	Using Natural Gradients to Infer a Potential Response to Climate Change: An Example on the Reproductive Performance of Dactylis Glomerata L Biology, 2012, 1, 857-868.	2.8	6
50	Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alpine Botany, 2012, 122, 11-21.	2.4	33
51	Plant and animal diversity in a region of the Southern Alps: the role of environmental and spatial processes. Landscape Ecology, 2012, 27, 417-431.	4.2	26
52	Growth prediction for five tree species in an Italian urban forest. Urban Forestry and Urban Greening, 2011, 10, 169-176.	5.3	40
53	Impact of land use intensity and temperature on the reproductive performance of Dactylis glomerata populations in the southeastern Alps. Plant Ecology, 2011, 212, 651-661.	1.6	15
54	Seed Harvesting for Ecological Restoration: Efficiency of Haymaking and Seed-Stripping on Different Grassland Types in the Eastern Italian Alps. Ecological Restoration, 2009, 27, 66-75.	0.5	20

#	Article	IF	CITATIONS
55	Seed production of an Arrhenatherion elatioris hayâ€meadow in the eastern Italian Alps. Grass and Forage Science, 2009, 64, 208-218.	2.9	10
56	Does residence time affect responses of alien species richness to environmental and spatial processes?. NeoBiota, 0, 14, 47-66.	1.0	8