
Peter W Krug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9817041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An adventitious agent-free clonal cell line that is highly susceptible to foot -and-mouth disease virus. Biologicals, 2021, 72, 33-41.	1.4	2
2	Novel Foot-and-Mouth Disease Vaccine Platform: Formulations for Safe and DIVA-Compatible FMD Vaccines With Improved Potency. Frontiers in Veterinary Science, 2020, 7, 554305.	2.2	10
3	Foot-and-Mouth Disease Virus Lacking the Leader Protein and Containing Two Negative DIVA Markers (FMDV LL3B3D A24) Is Highly Attenuated in Pigs. Pathogens, 2020, 9, 129.	2.8	4
4	Genistein Has Antiviral Activity against Herpes B Virus and Acts Synergistically with Antiviral Treatments to Reduce Effective Dose. Viruses, 2019, 11, 499.	3.3	35
5	Disinfection of transboundary animal disease viruses on surfaces used in pork packing plants. Veterinary Microbiology, 2018, 219, 219-225.	1.9	25
6	Simultaneous Deletion of the <i>9GL</i> and <i>UK</i> Genes from the African Swine Fever Virus Georgia 2007 Isolate Offers Increased Safety and Protection against Homologous Challenge. Journal of Virology, 2017, 91, .	3.4	150
7	Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model. Viruses, 2016, 8, 291.	3.3	71
8	African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge. Virus Research, 2016, 221, 8-14.	2.2	107
9	Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus. Virus Research, 2016, 213, 165-171.	2.2	54
10	African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene <i>9GL</i> (B119L), when Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge. Journal of Virology, 2015, 89, 8556-8566.	3.4	141
11	African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. Journal of Virology, 2015, 89, 6048-6056.	3.4	234
12	The Progressive Adaptation of a Georgian Isolate of African Swine Fever Virus to Vero Cells Leads to a Gradual Attenuation of Virulence in Swine Corresponding to Major Modifications of the Viral Genome. Journal of Virology, 2015, 89, 2324-2332.	3.4	125
13	Virus–host interactions in persistently FMDV-infected cells derived from bovine pharynx. Virology, 2014, 468-470, 185-196.	2.4	18
14	A Continuous Bovine Kidney Cell Line Constitutively Expressing Bovine α _V β ₆ Integrin Has Increased Susceptibility to Foot-and-Mouth Disease Virus. Journal of Clinical Microbiology, 2013, 51, 1714-1720.	3.9	123
15	Disinfection of foot-and-mouth disease and African swine fever viruses with citric acid and sodium hypochlorite on birch wood carriers. Veterinary Microbiology, 2012, 156, 96-101.	1.9	43
16	Reassessing the detection of B-virus-specific serum antibodies. Comparative Medicine, 2012, 62, 516-26.	1.0	10
17	Chemical disinfection of high-consequence transboundary animal disease viruses on nonporous surfaces. Biologicals, 2011, 39, 231-235.	1.4	35
18	Inhibition of B Virus (<i>Macacine herpesvirus</i> 1) by Conventional and Experimental Antiviral Compounds. Antimicrobial Agents and Chemotherapy, 2010, 54, 452-459.	3.2	11

Peter W Krug

#	Article	IF	CITATIONS
19	Viral infection of cells in culture detected using infrared microscopy. Analyst, The, 2009, 134, 1462.	3.5	9
20	Infrared microscopy for the study of biological cell monolayers. I. Spectral effects of acetone and formalin fixation. Biopolymers, 2008, 89, 921-930.	2.4	24
21	Quantitative real-time PCR for detection of monkey B virus (Cercopithecine herpesvirus 1) in clinical samples. Journal of Virological Methods, 2003, 109, 245-251.	2.1	27
22	Alphaherpesvirus antigen quantitation to optimize the diagnosis of herpes B virus infection. Journal of Virological Methods, 2002, 103, 15-25.	2.1	8
23	Antibody cross-reactivity of alphaherpesviruses as mirrored in naturally infected primates. Archives of Virology, 2002, 147, 929-941.	2.1	21
24	Serological evidence of alpha herpesvirus infection in sooty mangabeys. Journal of Medical Primatology, 2002, 31, 120-128.	0.6	7
25	Biologic properties of human herpesvirus 7 Strain SB. Virus Research, 1997, 52, 25-41.	2.2	25
26	The null mutant of the U(L)31 gene of herpes simplex virus 1: construction and phenotype in infected cells. Journal of Virology, 1997, 71, 8307-8315.	3.4	114