Simon Klemperer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/981108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of a claimed ultra-low frequency electromagnetic (ULFEM) earthquake precursor. Geophysical Journal International, 2022, 229, 2081-2095.	2.4	4
2	Limited underthrusting of India below Tibet: ³ He/ ⁴ He analysis of thermal springs locates the mantle suture in continental collision. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113877119.	7.1	38
3	Crustal-scale wedge tectonics at the narrow boundary between the Tibetan Plateau and Ordos block. Earth and Planetary Science Letters, 2021, 554, 116700.	4.4	56
4	Uplifted marine terraces on Santa Catalina Island, California, USA: COMMENT. Geology, 2021, 49, e529-e529.	4.4	0
5	Western Gondwana imaged by S receiver-functions (SRF): New results on Moho, MLD (mid-lithospheric) Tj ETQq1	1,0,78431 6.0	ląrgBT /O∨
6	Love-wave normal modes discriminate between upper-mantle and crustal earthquakes: Simulation and demonstration in Tibet. Earth and Planetary Science Letters, 2021, 571, 117089.	4.4	4
7	Tomographic Image of Shear Wave Structure of NE India Based on Analysis of Rayleigh Wave Data. Frontiers in Earth Science, 2021, 9, .	1.8	11
8	Electromagnetic Field Generated by an Earthquake Source Due to Motional Induction in 3D Stratified Media, and Application to 2008 M w 6.1 Qingchuan Earthquake. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022102.	3.4	2
9	Post-critical SsPmp and its applications to virtual deep seismic sounding (VDSS)—3: back-projection imaging of the crust–mantle boundary in a heterogeneous lithosphere, theory and application. Geophysical Journal International, 2020, 223, 2166-2187.	2.4	2
10	Localized foundering of Indian lower crust in the India–Tibet collision zone. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24742-24747.	7.1	58
11	Coseismic electric and magnetic signals observed during 2017 Jiuzhaigou Mw 6.5 earthquake and explained by electrokinetics and magnetometer rotation. Geophysical Journal International, 2020, 223, 1130-1143.	2.4	14
12	A Rapid Response Network to Record Aftershocks of the 2015 MÂ7.8 Gorkha Earthquake in Nepal. Seismological Research Letters, 2020, 91, 2399-2408.	1.9	6
13	Post-critical SsPmp and its applications to Virtual Deep Seismic Sounding (VDSS) – 2: 1-D imaging of the crust/mantle and joint constraints with receiver functions. Geophysical Journal International, 2019, 219, 1334-1347.	2.4	6
14	Multiâ€stage evolution of the Ordos lithosphere from stochastic inversion of elevation, geoid, surface heat flow, Rayleigh wave dispersion data and magnetotelluric data. Acta Geologica Sinica, 2019, 93, 101-101.	1.4	0
15	Detection of a widespread mantle component of ³ He in thermal springs of Lhasa Block and Tethyan Himalaya, eastern Tibet: evidence for rollâ€back of the Indianâ€Asian mantle suture south of the Yarlung suture zone, and asthenospheric upwelling beneath the Lhasa block. Acta Geologica Sinica, 2019. 93. 56-57.	1.4	3
16	Mantleâ€earthquake geothermometry of rejuvenated Proterozoic lithosphere, western Saudi Arabia. Acta Geologica Sinica, 2019, 93, 102-103.	1.4	0
17	Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal. Science Advances, 2019, 5, eaav0723.	10.3	38
18	Duplex in the Main Himalayan Thrust illuminated by aftershocks of the 2015 Mw 7.8 Gorkha earthquake. Nature Geoscience, 2019, 12, 1018-1022.	12.9	41

#	Article	IF	CITATIONS
19	Deepâ€ s eated lithospheric geometry in revealing collapse of the Tibetan Plateau. Acta Geologica Sinica, 2019, 93, 66-66.	1.4	0
20	Late Quaternary subsidence of Santa Catalina Island, California Continental Borderland, demonstrated by seismic-reflection data and fossil assemblages from submerged marine terraces. Bulletin of the Geological Society of America, 2019, 131, 21-42.	3.3	6
21	Receiver-function imaging of the lithosphere at the Kunlun-Qaidam boundary, Northeast Tibet. Tectonophysics, 2019, 759, 30-43.	2.2	10
22	Sycamore Knoll: A wave-planed pop-up structure in a sinistral-oblique thrust system, Southern California Continental Borderland. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 150, 132-145.	1.4	3
23	Cross-validation of independent ultra-low-frequency magnetic recording systems for active fault studies. Earth, Planets and Space, 2018, 70, 57.	2.5	8
24	Two-stage Red Sea rifting inferred from mantle earthquakes in Neoproterozoic lithosphere. Earth and Planetary Science Letters, 2018, 497, 92-101.	4.4	21
25	Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau. Earth-Science Reviews, 2018, 185, 751-762.	9.1	53
26	Post-critical SsPmp and its applications to Virtual Deep Seismic Sounding (VDSS)—1: sensitivity to lithospheric 1-D and 2-D structure. Geophysical Journal International, 2018, 215, 880-894.	2.4	7
27	Seismostratigraphy of a submerged coastal transition zone: Precise determination of paleocoastal environments during the last glacial maximum from high-resolution 3D multichannel seismic. , 2018, , .		0
28	Nonuniform subduction of the Indian crust beneath the Himalayas. Scientific Reports, 2017, 7, 12497.	3.3	52
29	Crustal structure of the Ruby Mountains metamorphic core complex, Nevada, from passive seismic imaging. , 2017, 13, 1506-1523.		6
30	Rapid variation in upper-mantle rheology across the San Andreas fault system and Salton Trough, southernmost California, USA. Geology, 2016, 44, 575-578.	4.4	11
31	West–east transition from underplating to steep subduction in the India–Tibet collision zone revealed by receiver-function profiles. Earth and Planetary Science Letters, 2016, 452, 171-177.	4.4	44
32	Crustal-scale duplexing beneath the YarlungÂZangbo suture in the western Himalaya. Nature Geoscience, 2016, 9, 555-560.	12.9	153
33	3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth and Planetary Science Letters, 2016, 443, 162-175.	4.4	135
34	Hidden intrabasin extension: Evidence for dike-fault interaction from magnetic, gravity, and seismic reflection data in Surprise Valley, northeastern California. , 2016, 12, 15-25.		9
35	San <scp>A</scp> ndreas <scp>F</scp> ault dip, <scp>P</scp> eninsular <scp>R</scp> anges mafic lower crust and partial melt in the <scp>S</scp> alton <scp>T</scp> rough, <scp>S</scp> outhern <scp>C</scp> alifornia, from ambientâ€noise tomography. Geochemistry, Geophysics, Geosystems, 2015, 16, 3946-3972.	2.5	48
36	Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India–Tibet continental collision zone. Earth and Planetary Science Letters, 2015, 414, 6-15.	4.4	86

#	Article	IF	CITATIONS
37	Weakly coupled lithospheric extension in southern Tibet. Earth and Planetary Science Letters, 2015, 430, 171-177.	4.4	65
38	Zhongjie Zhang (1964 – 2013). Tectonophysics, 2014, 627, 4-5.	2.2	2
39	Mantle fluids in the Karakoram fault: Helium isotope evidence. Earth and Planetary Science Letters, 2013, 366, 59-70.	4.4	125
40	Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation. Tectonophysics, 2013, 606, 140-159.	2.2	58
41	Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking. Earth and Planetary Science Letters, 2013, 367, 15-27.	4.4	202
42	Normal faulting from simple shear rifting in South Tibet, using evidence from passive seismic profiling across the Yadong-Gulu Rift. Tectonophysics, 2013, 606, 178-186.	2.2	34
43	Ambientâ€noise tomography of north Tibet limits geological terrane signature to upperâ€middle crust. Geophysical Research Letters, 2013, 40, 808-813.	4.0	19
44	Crustal shear (S) velocity and Poisson's ratio structure along the INDEPTH IV profile in northeast Tibet as derived from wide-angle seismic data. Geophysical Journal International, 2012, 191, 369-384.	2.4	28
45	A complex Tibetan upper mantle: A fragmented Indian slab and no south-verging subduction of Eurasian lithosphere. Earth and Planetary Science Letters, 2012, 333-334, 101-111.	4.4	117
46	Injection of Tibetan crust beneath the south Qaidam Basin: Evidence from INDEPTH IV wide-angle seismic data. Journal of Geophysical Research, 2011, 116, .	3.3	105
47	Crustal structure beneath the Sub-Himalayan fold–thrust belt, Kangra recess, northwest India, from seismic reflection profiling: Implications for Late Paleoproterozoic orogenesis and modern earthquake hazard. Earth and Planetary Science Letters, 2011, 308, 218-228.	4.4	55
48	ATV magnetometer systems for efficient ground magnetic surveying. The Leading Edge, 2011, 30, 394-398.	0.7	4
49	Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China. Gondwana Research, 2011, 19, 994-1007.	6.0	74
50	Crustal structure of the Tethyan Himalaya, southern Tibet: new constraints from old wide-angle seismic data. Geophysical Journal International, 2010, , .	2.4	16
51	The northwestern margin of the Basin-and-Range Province, part 1: Reflection profiling of the moderate-angle (~30°) Surprise Valley Fault. Tectonophysics, 2010, 488, 143-149.	2.2	16
52	Test of deep seismic reflection profiling across central uplift of Qiangtang terrane in Tibetan plateau. Journal of Earth Science (Wuhan, China), 2009, 20, 438-447.	3.2	11
53	Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersion. Tectonophysics, 2009, 477, 58-65.	2.2	102
54	Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	87

#	Article	IF	CITATIONS
55	Threeâ€dimensional crustal structure of the Mariana island arc from seismic tomography. Journal of Geophysical Research, 2008, 113, .	3.3	76
56	Nature of the crust beneath northwest Basin and Range province from teleseismic receiver function data. Journal of Geophysical Research, 2008, 113, .	3.3	17
57	U.S. Passive Margins: Are We Missing an Important Opportunity?. Eos, 2008, 89, 64.	0.1	0
58	Seismology Across the Northeastern Edge of the Tibetan Plateau. Eos, 2008, 89, 487-487.	0.1	12
59	Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for development of continental rifts. Earth and Planetary Science Letters, 2008, 265, 96-111.	4.4	129
60	Integration of the NEES T-Rex Vibrator and PASSCAL Texan Recorders for Seismic Profiling of Shallow and Deep Crustal Targets. Seismological Research Letters, 2008, 79, 41-46.	1.9	3
61	Reconciling lithospheric deformation and lower crustal flow beneath central Tibet: COMMENT and REPLY: COMMENT. Geology, 2008, 36, e180-e180.	4.4	5
62	Crustal velocity structure from surface wave dispersion tomography in the Indian Himalaya. Himalayan Journal of Sciences, 2008, 5, 33.	0.3	0
63	Northeast Tibetan Crustal Structure from INDEPTH IV Controlled- Source Seismic Data. Himalayan Journal of Sciences, 2008, 5, 76-77.	0.3	Ο
64	Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology, 2007, 35, 203.	4.4	183
65	Seismoelectric imaging of shallow targets. Geophysics, 2007, 72, G9-G20.	2.6	76
66	Crustal structure of the northwestern Basin and Range Province and its transition to unextended volcanic plateaus. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	33
67	Temporal geochemical variation in Ethiopian Lakes Shala, Arenguade, Awasa, and Beseka: Possible environmental impacts from underwater and borehole detonations. Journal of African Earth Sciences, 2007, 48, 174-198.	2.0	27
68	Seismic Anisotropy in the Asthenosphere Beneath the Eifel Region, Western Germany. , 2007, , 439-464.		4
69	Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. Geological Society Special Publication, 2006, 268, 39-70.	1.3	154
70	Reply to comment by P.J. O'Brien on: "The onset of India–Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya―by Mary L. Leech, S. Singh, A.K. Jain, Simon L. Klemperer and R.M. Manickavasagam, Earth Planetary Science Letters 234 (2005) 83–97. Earth and Planetary Science Letters, 2006, 245, 817-820.	4.4	3
71	Modeling sideswipe in 2D oceanic seismic surveys from sonar data: Application to the Mariana arc. Tectonophysics, 2006, 420, 333-343.	2.2	6
72	Crustal structure of the northern Main Ethiopian Rift from the EAGLE controlled-source survey; a snapshot of incipient lithospheric break-up. Geological Society Special Publication, 2006, 259, 269-292.	1.3	101

#	Article	IF	CITATIONS
73	Distributed Nubia-Somalia relative motion and dike intrusion in the Main Ethiopian Rift. Geophysical Journal International, 2006, 165, 303-310.	2.4	77
74	METHODOLOGICAL INSIGHTS: Using seismic sensors to detect elephants and other large mammals: a potential census technique. Journal of Applied Ecology, 2005, 42, 587-594.	4.0	34
75	Shear-wave splitting around the Eifel hotspot: evidence for a mantle upwelling. Geophysical Journal International, 2005, 163, 962-980.	2.4	77
76	Shear wave splitting around hotspots: Evidence for upwelling-related mantle flow?. , 2005, , .		9
77	The onset of India–Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters, 2005, 234, 83-97.	4.4	506
78	Seismic stratigraphy of Detroit Seamount, Hawaiian-Emperor seamount chain: Post-hot-spot shield-building volcanism and deposition of the Meiji drift. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	18
79	West-east variation in crustal thickness in northern Lhasa block, central Tibet, from deep seismic sounding data. Journal of Geophysical Research, 2005, 110, .	3.3	96
80	Three-dimensional seismic imaging of a protoridge axis in the Main Ethiopian rift. Geology, 2004, 32, 949.	4.4	171
81	Development of Electroseismic Experimental Methods. , 2004, , .		2
82	Detection of southward intracontinental subduction of Tibetan lithosphere along the Bangong-Nujiang suture by P-to-S converted waves. Geology, 2004, 32, 209.	4.4	58
83	Deep reflection surveying in central Tibet: lower-crustal layering and crustal flow. Geophysical Journal International, 2004, 156, 115-128.	2.4	50
84	Crustal structure of seismic velocity in southern tibet and east-westward escape of the crustal material. Science in China Series D: Earth Sciences, 2004, 47, 500-506.	0.9	16
85	On the relationship between extension and anisotropy: Constraints from shear wave splitting across the East African Plateau. Journal of Geophysical Research, 2004, 109, .	3.3	82
86	Seismic waves from elephant vocalizations: A possible communication mode?. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	22
87	Shear-wave splitting in Ethiopia: Precambrian mantle anisotropy locally modified by Neogene rifting. Geophysical Research Letters, 2004, 31, .	4.0	68
88	Shear-wave splitting beneath the Snake River Plain suggests a mantle upwelling beneath eastern Nevada, USA. Earth and Planetary Science Letters, 2004, 222, 529-542.	4.4	29
89	Development Of Electroseismic Experimental Methods. , 2004, , .		0
90	INDEPTH III seismic data: From surface observations to deep crustal processes in Tibet. Tectonics, 2003, 22, n/a-n/a.	2.8	126

#	Article	IF	CITATIONS
91	Reply to "Shear-wave splitting to test mantle deformation models around Hawaii―by Vinnik et al Geophysical Research Letters, 2003, 30, .	4.0	10
92	Tectonic Evolution of the Bristol Bay basin, southeast Bering Sea: Constraints from seismic reflection and potential field data. Tectonics, 2003, 22, n/a-n/a.	2.8	4
93	Geophysical project in Ethiopia studies continental breakup. Eos, 2003, 84, 337.	0.1	60
94	Seismic Imaging of the Downwelling Indian Lithosphere Beneath Central Tibet. Science, 2003, 300, 1424-1427.	12.6	310
95	An overview of the Izu-Bonin-Mariana subduction factory. Geophysical Monograph Series, 2003, , 175-222.	0.1	221
96	Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen, eastern China, from seismic reflection profiling. Geology, 2003, 31, 435.	4.4	61
97	Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen, eastern China, from seismic reflection profiling: Comment and Reply. Geology, 2003, 31, e39-e39.	4.4	0
98	Crustal structure of the Bering and Chukchi shelves: Deep seismic reflection profiles across the North American continent between Alaska and Russia. , 2002, , .		33
99	Analysis of Ultralow-Frequency Electromagnetic Field Measurements Associated with the 1999 M 7.1 Hector Mine, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 2002, 92, 1513-1524.	2.3	38
100	Crustal structure across the Bering Strait, Alaska: Onshore recordings of a marine seismic survey. , 2002, , .		3
101	Geographic information systems compilation of geophysical, geologic, and tectonic data for the Bering Shelf, Chukchi Sea, Arctic margin, and adjacent landmasses. , 2002, , .		2
102	Constraints on the age of formation of seismically reflective middle and lower crust beneath the Bering Shelf: SHRIMP zircon dating of xenoliths from Saint Lawrence Island. , 2002, , .		4
103	Characteristics of volcanic rifted margins. , 2002, , .		90
104	Ultra-low frequency electromagnetic measurements associated with the 1998 Mw 5.1 San Juan Bautista, California earthquake and implications for mechanisms of electromagnetic earthquake precursors. Tectonophysics, 2002, 359, 65-79.	2.2	23
105	Shear-wave splitting to test mantle deformation models around Hawaii. Geophysical Research Letters, 2001, 28, 4319-4322.	4.0	44
106	Crustal structure of central Tibet as derived from projectÂINDEPTH wide-angle seismic data. Geophysical Journal International, 2001, 145, 486-498.	2.4	175
107	A Transportable System for Monitoring Ultralow Frequency Electromagnetic Signals Associated with Earthquakes. Seismological Research Letters, 2000, 71, 423-436.	1.9	26
108	CDP mapping to obtain the fine structure of the crust and upper mantle from seismic sounding data: an example for the southeastern China. Physics of the Earth and Planetary Interiors, 2000, 122, 133-146.	1.9	33

#	Article	IF	CITATIONS
109	Crustal structure transition from oceanic arc to continental arc, eastern Aleutian Islands and Alaska Peninsula. Earth and Planetary Science Letters, 2000, 179, 567-579.	4.4	91
110	Three-dimensional seismic model of the Sierra Nevada arc, California, and its implications for crustal and upper mantle composition. Journal of Geophysical Research, 2000, 105, 10899-10921.	3.3	113
111	Vertical extent of the newborn San Andreas fault at the Mendocino triple junction. Geology, 2000, 28, 1111-1114.	4.4	3
112	Structure of an island-arc: Wide-angle seismic studies in the eastern Aleutian Islands, Alaska. Journal of Geophysical Research, 1999, 104, 10667-10694.	3.3	87
113	Measuring the seismic properties of Tibetan bright spots: Evidence for free aqueous fluids in the Tibetan middle crust. Journal of Geophysical Research, 1999, 104, 10795-10825.	3.3	134
114	Midcrustal reflector on INDEPTH wide-angle profiles: An ophiolitic slab beneath the India-Asia suture in southern Tibet?. Tectonics, 1999, 18, 793-808.	2.8	76
115	Crustal deformation of the Lhasa terrane, Tibet plateau from Project INDEPTH deep seismic reflection profiles. Tectonics, 1998, 17, 501-519.	2.8	62
116	Ophiolitic basement to a forearc basin and implications for continental growth: The Coast Range/Great Valley ophiolite, California. Tectonics, 1998, 17, 558-570.	2.8	64
117	Fluids in the lower crust following Mendocino triple junction migration: Active basaltic intrusion?. Geology, 1998, 26, 171.	4.4	43
118	Location of the southern edge of the Gorda slab and evidence for an adjacent asthenospheric window: Results from seismic profiling and gravity. Journal of Geophysical Research, 1998, 103, 30101-30115.	3.3	34
119	Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin. Bulletin of the Geological Society of America, 1997, 109, 1536-1562.	3.3	126
120	Modeling Low-frequency Magnetic-field Precursors to the Loma Prieta Earthquake with a Precursory Increase in Fault-zone Conductivity. Pure and Applied Geophysics, 1997, 150, 217-248.	1.9	69
121	Structural elements of the southern Tethyan Himalaya crust from wide-angle seismic data. Tectonics, 1996, 15, 997-1005.	2.8	77
122	Seismic reflections from the near-vertical San Andreas Fault. Geophysical Research Letters, 1996, 23, 237-240.	4.0	23
123	Partially Molten Middle Crust Beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science, 1996, 274, 1684-1688.	12.6	1,063
124	INDEPTH Wide-Angle Reflection Observation of P-Wave-to-S-Wave Conversion from Crustal Bright Spots in Tibet. Science, 1996, 274, 1690-1691.	12.6	132
125	Three-dimensional crustal structure of the southern Sierra Nevada from seismic fan profiles and gravity modeling. Geology, 1996, 24, 367-370.	4.4	83
126	Transition from slab to slabless: Results from the 1993 Mendocino triple junction seismic experiment. Geology, 1996, 24, 195.	4.4	48

#	Article	IF	CITATIONS
127	Seismic Evidence for a Lower-Crustal Detachment Beneath San Francisco Bay, California. Science, 1994, 265, 1436-1439.	12.6	74
128	Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 1993, 366, 557-559.	27.8	636
129	Deep structure of southern Ireland: a new geological synthesis using BIRPS deep reflection profiling. Journal of the Geological Society, 1992, 149, 915-922.	2.1	21
130	Introduction: deep crustal probing. Precambrian Research, 1992, 55, 169-172.	2.7	2
131	High electrical conductivity in a model lower crust with unconnected, conductive, seismically reflective layers. Geophysical Journal International, 1992, 108, 895-905.	2.4	48
132	A deep seismic reflection transect across the Irish Caledonides. Journal of the Geological Society, 1991, 148, 149-164.	2.1	82
133	Crustal structure of the central and southern North Sea from BIRPS deep seismic reflection profiling. Journal of the Geological Society, 1991, 148, 445-457.	2.1	41
134	Reflections from mantle fault zones around the British Isles. Geology, 1990, 18, 528.	4.4	47
135	Dating the source of lower crystal reflectivity using BIRPS deep Seismic profiles across the lapetus suture. Tectonophysics, 1990, 173, 445-454.	2.2	20
136	Short Paper: Seismic reflection evidence for the location of the Iapetus suture west of Ireland. Journal of the Geological Society, 1989, 146, 409-412.	2.1	42
137	A Comparison of the Moho Interpreted From Gravity Data and From Deep Seismic Reflection Data In the Northern North Sea. Geophysical Journal International, 1989, 97, 247-258.	2.4	29
138	Lowerâ€crustal porosity from electrical measurements and inferences about composition from seismic velocities. Geophysical Research Letters, 1989, 16, 255-258.	4.0	45
139	Deep seismic reflection profiling and the growth of the continental crust. Tectonophysics, 1989, 161, 233-244.	2.2	39
140	Processing Birps Deep Seismic Reflection Data: A Tutorial Review. , 1989, , 229-257.		13
141	Structure and Stratigraphy of the Porcupine Basin <subtitle>Relationships to Deep Crustal Structure and the Opening of the North Atlantic</subtitle> . , 1989, , .		20
142	Crustal thinning and nature of extension in the northern North Sea from deep seismic reflection profiling. Tectonics, 1988, 7, 803-821.	2.8	106
143	The deep structure of northern England and the lapetus Suture zone from BIRPS deep seismic reflection profiles. Journal of the Geological Society, 1988, 145, 727-740.	2.1	122
144	Overview of the COCORP 40°N Transect, western United States: The fabric of an orogenic belt. Bulletin of the Geological Society of America, 1987, 98, 308.	3.3	171

#	Article	IF	CITATIONS
145	Seismic noiseâ€reduction techniques for use with vertical stacking: An empirical comparison. Geophysics, 1987, 52, 322-334.	2.6	20
146	Nature and distribution of deformation across the Banda Arc–Australian collision zone at Timor. Bulletin of the Geological Society of America, 1987, 98, 18.	3.3	110
147	lapetus suture located beneath the North Sea by BIRPS deep seismic reflection profiling. Geology, 1987, 15, 195.	4.4	71
148	Crustal structure of western Nevada from COCORP deep seismic-reflection data. Bulletin of the Geological Society of America, 1987, 98, 320.	3.3	35
149	Wide-angle deep crustal reflections in the northern Appalachians. Geophysical Journal International, 1987, 89, 183-188.	2.4	26
150	Reflectivity of the crystalline crust: hypotheses and tests. Geophysical Journal International, 1987, 89, 217-222.	2.4	55
151	Interpreting the deep structure of rifts with synthetic seismic sections. Geodynamic Series, 1986, , 301-311.	0.1	16
152	The Moho in the northern Basin and Range province, Nevada, along the COCORP 40°N seismic-reflection transect. Bulletin of the Geological Society of America, 1986, 97, 603.	3.3	252
153	Some results of COCORP seismic reflection profiling in the Grenville-age Adirondack Mountains, New York State. Canadian Journal of Earth Sciences, 1985, 22, 141-153.	1.3	47
154	Simulations of noise rejection and mantissaâ€only recording: An experiment in highâ€amplitude noise reduction with COCORP data. Geophysics, 1985, 50, 709-714.	2.6	6
155	Geology: Seismic reflections of the continental crust. Nature, 1984, 311, 409-409.	27.8	2