
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/980865/publications.pdf Version: 2024-02-01

VANN HEDALLT

#	Article	IF	CITATIONS
1	High-throughput discovery of novel developmental phenotypes. Nature, 2016, 537, 508-514.	27.8	1,001
2	Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature, 2013, 504, 277-281.	27.8	946
3	A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biology, 2013, 14, R82.	9.6	403
4	Domains of genome-wide gene expression dysregulation in Down's syndrome. Nature, 2014, 508, 345-350.	27.8	298
5	The mammalian gene function resource: the international knockout mouse consortium. Mammalian Genome, 2012, 23, 580-586.	2.2	292
6	The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science, 2016, 354, 909-912.	12.6	267
7	Epigallocatechinâ€3â€gallate, a DYRK1A inhibitor, rescues cognitive deficits in <scp>D</scp> own syndrome mouse models and in humans. Molecular Nutrition and Food Research, 2014, 58, 278-288.	3.3	234
8	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature Genetics, 2017, 49, 1231-1238.	21.4	216
9	Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature, 2002, 420, 145-150.	27.8	207
10	Prevalence of sexual dimorphism in mammalian phenotypic traits. Nature Communications, 2017, 8, 15475.	12.8	200
11	Identification of the translocation breakpoints in the Ts65Dn and Ts1Cje mouse lines: relevance for modeling down syndrome. Mammalian Genome, 2011, 22, 674-684.	2.2	186
12	Specific targeting of the GABA-A receptor $\hat{I}\pm 5$ subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice. Journal of Psychopharmacology, 2011, 25, 1030-1042.	4.0	153
13	Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nature Genetics, 1998, 20, 381-384.	21.4	151
14	Rodent models in Down syndrome research: impact and future opportunities. DMM Disease Models and Mechanisms, 2017, 10, 1165-1186.	2.4	149
15	DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome. Frontiers in Behavioral Neuroscience, 2016, 10, 104.	2.0	142
16	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	21.4	137
17	Down Syndrome: From Understanding the Neurobiology to Therapy. Journal of Neuroscience, 2010, 30, 14943-14945.	3.6	133
18	Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mammalian Genome, 2012, 23, 600-610.	2.2	133

#	Article	IF	CITATIONS
19	DYRK1A: A master regulatory protein controlling brain growth. Neurobiology of Disease, 2012, 46, 190-203.	4.4	128
20	Genetics of dark skin in mice. Genes and Development, 2003, 17, 214-228.	5.9	124
21	Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes. PLoS Genetics, 2016, 12, e1005709.	3.5	120
22	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	12.8	116
23	Heme Oxygenase-1 Accelerates Cutaneous Wound Healing in Mice. PLoS ONE, 2009, 4, e5803.	2.5	111
24	Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nature Nanotechnology, 2017, 12, 322-328.	31.5	111
25	Aneuploidy: From a Physiological Mechanism of Variance to Down Syndrome. Physiological Reviews, 2009, 89, 887-920.	28.8	106
26	Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage. Neurobiology of Disease, 2014, 69, 65-75.	4.4	104
27	A new mouse model for the trisomy of the Abcg1–U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Human Molecular Genetics, 2009, 18, 4756-4769.	2.9	101
28	WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9308-E9317.	7.1	77
29	EuroPhenome: a repository for high-throughput mouse phenotyping data. Nucleic Acids Research, 2010, 38, D577-D585.	14.5	75
30	Applying the ARRIVE Guidelines to an In Vivo Database. PLoS Biology, 2015, 13, e1002151.	5.6	75
31	Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Molecular Psychiatry, 2018, 23, 1356-1367.	7.9	74
32	Heterozygous deletion of the Williams–Beuren syndrome critical interval in mice recapitulates most features of the human disorder. Human Molecular Genetics, 2014, 23, 6481-6494.	2.9	69
33	Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration. Human Molecular Genetics, 2015, 24, 6736-6755.	2.9	64
34	Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications, 2020, 11, 655.	12.8	64
35	Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE. Scientific Reports, 2017, 7, 43331.	3.3	62
36	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	21.4	60

YANN HERAULT

#	Article	IF	CITATIONS
37	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nature Communications, 2018, 9, 288.	12.8	59
38	Pharmacological correction of excitation/inhibition imbalance in Down syndrome mouse models. Frontiers in Behavioral Neuroscience, 2015, 9, 267.	2.0	57
39	New models for human disease from the International Mouse Phenotyping Consortium. Mammalian Genome, 2019, 30, 143-150.	2.2	57
40	Targeting the RHOA pathway improves learning and memory in adult Kctd13 and 16p11.2 deletion mouse models. Molecular Autism, 2021, 12, 1.	4.9	56
41	Highlyâ€efficient, fluorescent, locus directed cre and FlpO deleter mice on a pure C57BL/6N genetic background. Genesis, 2012, 50, 482-489.	1.6	55
42	Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mammalian Genome, 2017, 28, 291-301.	2.2	55
43	Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	55
44	Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes. Human Molecular Genetics, 2016, 25, 146-157.	2.9	53
45	HoxGene Expression in Limbs: Colinearity by Opposite Regulatory Controls. Developmental Biology, 1999, 208, 157-165.	2.0	52
46	Chronic Treatment with a Promnesiant GABA-A -Selective Inverse Agonist Increases Immediate Early Genes Expression during Memory Processing in Mice and Rectifies Their Expression Levels in a Down Syndrome Mouse Model. Advances in Pharmacological Sciences, 2011, 2011, 1-11.	3.7	51
47	Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development. BMC Genomics, 2009, 10, 138.	2.8	50
48	Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors: a survey of recent patent literature. Expert Opinion on Therapeutic Patents, 2017, 27, 1183-1199.	5.0	50
49	DYRK1A, a Novel Determinant of the Methionine-Homocysteine Cycle in Different Mouse Models Overexpressing this Down-Syndrome-Associated Kinase. PLoS ONE, 2009, 4, e7540.	2.5	50
50	Impact of Temporal Variation on Design and Analysis of Mouse Knockout Phenotyping Studies. PLoS ONE, 2014, 9, e111239.	2.5	46
51	Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy. Kidney International, 2014, 86, 747-756.	5.2	45
52	Cre/loxP-Mediated Chromosome Engineering of the Mouse Genome. Handbook of Experimental Pharmacology, 2007, , 29-48.	1.8	44
53	Dyrk1A induces pancreatic Î ² cell mass expansion and improves glucose tolerance. Cell Cycle, 2014, 13, 2221-2229.	2.6	44
54	BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with Tau through Thr348 phosphorylation. Acta Neuropathologica, 2019, 138, 631-652.	7.7	44

YANN HERAULT

#	Article	IF	CITATIONS
55	Cbs overdosage is necessary and sufficient to induce cognitive phenotypes in mouse models of Down syndrome and interacts genetically with Dyrk1a. Human Molecular Genetics, 2019, 28, 1561-1577.	2.9	41
56	EMMAmouse mutant resources for the international scientific community. Nucleic Acids Research, 2010, 38, D570-D576.	14.5	39
57	PCP4 (PEP19) overexpression induces premature neuronal differentiation associated with Ca ²⁺ /Calmodulinâ€Dependent kinase llâ€î´ activation in mouse models of down syndrome. Journal of Comparative Neurology, 2011, 519, 2779-2802.	1.6	39
58	Opposite Phenotypes of Muscle Strength and Locomotor Function in Mouse Models of Partial Trisomy and Monosomy 21 for the Proximal Hspa13-App Region. PLoS Genetics, 2015, 11, e1005062.	3.5	39
59	Modeling Chromosomes in Mouse to Explore the Function of Genes, Genomic Disorders, and Chromosomal Organization. PLoS Genetics, 2006, 2, e86.	3.5	38
60	The long repetitive polypurine/polypyrimidine sequence (TTCCC)48forms DNA triplex with PU-PU-PY base tripletsin vivo. Nucleic Acids Research, 1992, 20, 439-443.	14.5	37
61	Proliferation deficits and gene expression dysregulation in Down's syndrome (Ts1Cje) neural progenitor cells cultured from neurospheres. Journal of Neuroscience Research, 2009, 87, 3143-3152.	2.9	37
62	Identification of genes required for eye development by high-throughput screening of mouse knockouts. Communications Biology, 2018, 1, 236.	4.4	37
63	Evolutionary conserved sequences are required for the insulation of the vertebrateHoxdcomplex in neural cells. Development (Cambridge), 2002, 129, 5521-5528.	2.5	36
64	Prenatal treatment with EGCG enriched green tea extract rescues GAD67 related developmental and cognitive defects in Down syndrome mouse models. Scientific Reports, 2019, 9, 3914.	3.3	35
65	The telomeric part of the human chromosome 21 from Cstb to Prmt2 is not necessary for the locomotor and short-term memory deficits observed in the Tc1 mouse model of Down syndrome. Behavioural Brain Research, 2011, 217, 271-281.	2.2	34
66	INFRAFRONTIERproviding mutant mouse resources as research tools for the international scientific community. Nucleic Acids Research, 2015, 43, D1171-D1175.	14.5	34
67	HENA, heterogeneous network-based data set for Alzheimer's disease. Scientific Data, 2019, 6, 151.	5.3	34
68	Oligogenic Effects of 16p11.2 Copy-Number Variation on Craniofacial Development. Cell Reports, 2019, 28, 3320-3328.e4.	6.4	34
69	Variability in Genome Editing Outcomes: Challenges for Research Reproducibility and Clinical Safety. Molecular Therapy, 2020, 28, 1422-1431.	8.2	34
70	The in vivo Down syndrome genomic library in mouse. Progress in Brain Research, 2012, 197, 169-197.	1.4	33
71	FELASA guidelines for the refinement of methods for genotyping genetically-modified rodents. Laboratory Animals, 2013, 47, 134-145.	1.0	32
72	Skin Progenitor Cells Contribute to Bleomycinâ€Induced Skin Fibrosis. Arthritis and Rheumatology, 2014, 66, 707-713.	5.6	32

#	Article	IF	CITATIONS
73	Fasudil treatment in adult reverses behavioural changes and brain ventricular enlargement in Oligophrenin-1 mouse model of intellectual disability. Human Molecular Genetics, 2016, 25, 2314-2323.	2.9	32
74	Increased H3K9 methylation and impaired expression of Protocadherins are associated with the cognitive dysfunctions of the Kleefstra syndrome. Nucleic Acids Research, 2018, 46, 4950-4965.	14.5	32
75	A Population Study of Common Ocular Abnormalities in C57BL/6N <i>rd8</i> Mice. , 2018, 59, 2252.		31
76	Overproduction of hydrogen sulfide, generated by cystathionine β-synthase, disrupts brain wave patterns and contributes to neurobehavioral dysfunction in a rat model of down syndrome. Redox Biology, 2022, 51, 102233.	9.0	31
77	V-src-induced-transcription of the avian clusterin gene. Nucleic Acids Research, 1992, 20, 6377-6383.	14.5	30
78	Modeling the monosomy for the telomeric part of human chromosome 21 reveals haploinsufficient genes modulating the inflammatory and airway responses. Human Molecular Genetics, 2007, 16, 2040-2052.	2.9	30
79	The Human-Specific BOLA2 Duplication Modifies Iron Homeostasis and Anemia Predisposition in Chromosome 16p11.2 Autism Individuals. American Journal of Human Genetics, 2019, 105, 947-958.	6.2	30
80	The Deep Genome Project. Genome Biology, 2020, 21, 18.	8.8	30
81	Specific Susceptibility to COVID-19 in Adults with Down Syndrome. NeuroMolecular Medicine, 2021, 23, 561-571.	3.4	30
82	LXR-Mediated ABCA1 Expression and Function Are Modulated by High Glucose and PRMT2. PLoS ONE, 2015, 10, e0135218.	2.5	30
83	Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. Science Translational Medicine, 2019, 11, .	12.4	29
84	Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA Working Group Report. Laboratory Animals, 2020, 54, 135-148.	1.0	29
85	Aneuploidy screening of embryonic stem cell clones by metaphase karyotyping and droplet digital polymerase chain reaction. BMC Cell Biology, 2016, 17, 30.	3.0	28
86	Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes, 2021, 12, 1833.	2.4	28
87	Mouse models of 17q21.31 microdeletion and microduplication syndromes highlight the importance of Kansl1 for cognition. PLoS Genetics, 2017, 13, e1006886.	3.5	27
88	Longâ€lasting correction of in vivo LTP and cognitive deficits of mice modelling Down syndrome with an α5â€selective GABA _A inverse agonist. British Journal of Pharmacology, 2020, 177, 1106-1118.	5.4	27
89	Immune Dysregulation and the Increased Risk of Complications and Mortality Following Respiratory Tract Infections in Adults With Down Syndrome. Frontiers in Immunology, 2021, 12, 621440.	4.8	26
90	The App-Runx1 Region Is Critical for Birth Defects and Electrocardiographic Dysfunctions Observed in a Down Syndrome Mouse Model. PLoS Genetics, 2012, 8, e1002724.	3.5	25

#	Article	IF	CITATIONS
91	How Does Circadian Rhythm Impact Salt Sensitivity of Blood Pressure in Mice? A Study in Two Close C57Bl/6 Substrains. PLoS ONE, 2016, 11, e0153472.	2.5	25
92	Physiological Expression of AMPKÎ ³ 2 Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice. Journal of Biological Chemistry, 2016, 291, 23428-23439.	3.4	25
93	Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks. PLoS ONE, 2007, 2, e1218.	2.5	24
94	Multi-influential genetic interactions alter behaviour and cognition through six main biological cascades in Down syndrome mouse models. Human Molecular Genetics, 2021, 30, 771-788.	2.9	24
95	The Expression of the Avian Clusterin Gene can be Driven by two Alternative Promoters with Distinct Regulatory Elements. FEBS Journal, 1995, 229, 215-223.	0.2	23
96	Mechanism of cystathionine-β-synthase inhibition by disulfiram: The role of bis(N,N-diethyldithiocarbamate)-copper(II). Biochemical Pharmacology, 2020, 182, 114267.	4.4	23
97	E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11004-11009.	7.1	22
98	Modeling Down syndrome in animals from the early stage to the 4.0 models and next. Progress in Brain Research, 2020, 251, 91-143.	1.4	22
99	Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy. , 2022, 1, 157-173.		22
100	A Small Compound Targeting Prohibitin with Potential Interest for Cognitive Deficit Rescue in Aging mice and Tau Pathology Treatment. Scientific Reports, 2020, 10, 1143.	3.3	21
101	Pain behavior in SCN9A (Nav1.7) and SCN10A (Nav1.8) mutant rodent models. Neuroscience Letters, 2021, 753, 135844.	2.1	21
102	Integrative approach to interpret DYRK1A variants, leading to a frequent neurodevelopmental disorder. Genetics in Medicine, 2021, 23, 2150-2159.	2.4	21
103	Optimizing PCR for Mouse Genotyping: Recommendations for Reliable, Rapid, Cost Effective, Robust and Adaptable to Highâ€Throughput Genotyping Protocol for Any Type of Mutation. Current Protocols in Mouse Biology, 2019, 9, e65.	1.2	20
104	Dyrk1a gene dosage in glutamatergic neurons has key effects in cognitive deficits observed in mouse models of MRD7 and Down syndrome. PLoS Genetics, 2021, 17, e1009777.	3.5	20
105	Prmt2 Regulates the Lipopolysaccharide-Induced Responses in Lungs and Macrophages. Journal of Immunology, 2011, 187, 4826-4834.	0.8	19
106	Atp6ap2 ablation in adult mice impairs viability through multiple organ deficiencies. Scientific Reports, 2017, 7, 9618.	3.3	19
107	Nox4 genetic inhibition in experimental hypertension and metabolic syndrome. Archives of Cardiovascular Diseases, 2018, 111, 41-52.	1.6	19
108	Reliable and robust droplet digital PCR (ddPCR) and RT-ddPCR protocols for mouse studies. Methods, 2021. 191. 95-106.	3.8	19

#	Article	IF	CITATIONS
109	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genetics, 2020, 16, e1009190.	3.5	19
110	Training and aging modulate the loss-of-balance phenotype observed in a new ENU-induced allele of Otopetrin1. Biology of the Cell, 2005, 97, 787-798.	2.0	18
111	Cognition and Hippocampal Plasticity in the Mouse Is Altered by Monosomy of a Genomic Region Implicated in Down Syndrome. Genetics, 2014, 197, 899-912.	2.9	18
112	Inducing Segmental Aneuploid Mosaicism in the Mouse Through Targeted Asymmetric Sister Chromatid Event of Recombination. Genetics, 2008, 180, 51-59.	2.9	17
113	Fork Stalling and Template Switching As a Mechanism for Polyalanine Tract Expansion Affecting the DYC Mutant of HOXD13, a New Murine Model of Synpolydactyly. Genetics, 2009, 183, 23-30.	2.9	17
114	Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression: Implications for Down syndrome. Neurobiology of Disease, 2014, 63, 92-106.	4.4	17
115	TUBG1 missense variants underlying cortical malformations disrupt neuronal locomotion and microtubule dynamics but not neurogenesis. Nature Communications, 2019, 10, 2129.	12.8	17
116	Dosage of the Abcg1-U2af1 Region Modifies Locomotor and Cognitive Deficits Observed in the Tc1 Mouse Model of Down Syndrome. PLoS ONE, 2015, 10, e0115302.	2.5	16
117	A new mouse model of ARX dup24 recapitulates the patients' behavioral and fine motor alterations. Human Molecular Genetics, 2018, 27, 2138-2153.	2.9	16
118	KIT is required for hepatic function during mouse post-natal development. BMC Developmental Biology, 2007, 7, 81.	2.1	15
119	cDNA and predicted amino acid sequences of the human ribosomal protein genes rpSl2 and rpLl7. Nucleic Acids Research, 1991, 19, 4001-4001.	14.5	14
120	Translating molecular advances in Down syndrome and Fragile X syndrome into therapies. European Neuropsychopharmacology, 2018, 28, 675-690.	0.7	14
121	Droplet digital PCR or quantitative PCR for in-depth genomic and functional validation of genetically altered rodents. Methods, 2021, 191, 107-119.	3.8	14
122	A suppressor locus for MODY3-diabetes. Scientific Reports, 2016, 6, 33087.	3.3	14
123	Missense Mutation in the Second RNA Binding Domain Reveals a Role for Prkra (PACT/RAX) during Skull Development. PLoS ONE, 2011, 6, e28537.	2.5	13
124	Deletion of the <i>App-Runx1</i> region in mice models human partial monosomy 21. DMM Disease Models and Mechanisms, 2015, 8, 623-634.	2.4	12
125	Characterization of PTZ-Induced Seizure Susceptibility in a Down Syndrome Mouse Model That Overexpresses CSTB. PLoS ONE, 2011, 6, e27845.	2.5	11
126	Integrated transcriptional analysis unveils the dynamics of cellular differentiation in the developing mouse hippocampus. Scientific Reports, 2017, 7, 18073.	3.3	11

#	Article	IF	CITATIONS
127	HRAS germline mutations impair LKB1/AMPK signaling and mitochondrial homeostasis in Costello syndrome models. Journal of Clinical Investigation, 2022, 132, .	8.2	11
128	Standardized Postâ€Mortem Examination and Fixation Procedures for Mutant and Treated Mice. Current Protocols in Mouse Biology, 2011, 1, 17-53.	1.2	10
129	Synaptic dysfunction in amygdala in intellectual disorder models. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 392-397.	4.8	10
130	High-throughput discovery of genetic determinants of circadian misalignment. PLoS Genetics, 2020, 16, e1008577.	3.5	10
131	Surveying the Down syndrome mouse model resource identifies critical regions responsible for chronic otitis media. Mammalian Genome, 2013, 24, 439-445.	2.2	9
132	Soft windowing application to improve analysis of high-throughput phenotyping data. Bioinformatics, 2020, 36, 1492-1500.	4.1	9
133	Identifying causative mechanisms linking early-life stress to psycho-cardio-metabolic multi-morbidity: The EarlyCause project. PLoS ONE, 2021, 16, e0245475.	2.5	9
134	Structure–Activity Relationship in the Leucettine Family of Kinase Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 1396-1417.	6.4	9
135	HDAC inhibitor ameliorates behavioral deficits in Mecp2308/y mouse model of Rett syndrome. Brain Research, 2021, 1772, 147670.	2.2	8
136	BAHD1 haploinsufficiency results in anxiety-like phenotypes in male mice. PLoS ONE, 2020, 15, e0232789.	2.5	7
137	High Resolution Episcopic Microscopy for Qualitative and Quantitative Data in Phenotyping Altered Embryos and Adult Mice Using the New "Histo3D―System. Biomedicines, 2021, 9, 767.	3.2	7
138	The homeodomain factor <i>Gbx1</i> is required for locomotion and cell specification in the dorsal spinal cord. PeerJ, 2013, 1, e142.	2.0	7
139	A Fast, Easy, and Customizable Eightâ€Color Flow Cytometric Method for Analysis of the Cellular Content of Bronchoalveolar Lavage Fluid in the Mouse. Current Protocols in Mouse Biology, 2017, 7, 88-99.	1.2	6
140	Hepatocyte SHP deficiency protects mice from acetaminophen-evoked liver injury in a JNK-signaling regulation and GADD45Î ² -dependent manner. Archives of Toxicology, 2018, 92, 2563-2572.	4.2	6
141	Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society. Molecular Syndromology, 2021, 12, 202-218.	0.8	6
142	ProMetIS, deep phenotyping of mouse models by combined proteomics and metabolomics analysis. Scientific Data, 2021, 8, 311.	5.3	6
143	A nested deletion approach to generate Cre deleter mice with progressive Hox profiles. International Journal of Developmental Biology, 2002, 46, 185-91.	0.6	6
144	DYRK1A overexpression decreases plasma lecithin:cholesterol acyltransferase activity and apolipoprotein A-I levels. Molecular Genetics and Metabolism, 2013, 110, 371-377.	1.1	5

#	Article	IF	CITATIONS
145	Pathogenesis of Anorectal Malformations in Retinoic Acid Receptor Knockout Mice Studied by HREM. Biomedicines, 2021, 9, 742.	3.2	5
146	The Human SCN10AG1662S Point Mutation Established in Mice Impacts on Mechanical, Heat, and Cool Sensitivity. Frontiers in Pharmacology, 2021, 12, 780132.	3.5	5
147	The Human SCN9AR185H Point Mutation Induces Pain Hypersensitivity and Spontaneous Pain in Mice. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	5
148	Controlled Somatic and Germline Copy Number Variation in the Mouse Model. Current Genomics, 2010, 11, 470-480.	1.6	3
149	The effects of Cstb duplication on APP/amyloid-β pathology and cathepsin B activity in a mouse model. PLoS ONE, 2021, 16, e0242236.	2.5	3
150	INFRAFRONTIER quality principles in systemic phenotyping. Mammalian Genome, 2021, , 1.	2.2	3
151	Possible association of 16p11.2 copy number variation with altered lymphocyte and neutrophil counts. Npj Genomic Medicine, 2022, 7, .	3.8	3
152	214th ENMC International Workshop: Establishing an international consortium for gene discovery and clinical research for Congenital Muscle Disease, Heemskerk, the Netherlands, 6–18 October 2015. Neuromuscular Disorders, 2019, 29, 644-650.	0.6	2
153	Ultrasoundâ€Guided Approaches to Improve Orthotopic Mouse Xenograft Models for Hepatocellular Carcinoma. Current Protocols in Mouse Biology, 2019, 9, e62.	1.2	2
154	PATHBIO: an international training program for precision mouse phenotyping. Mammalian Genome, 2020, 31, 49-53.	2.2	2
155	Introduction to Mammalian Genome Special Issue: Epigenetics. Mammalian Genome, 2020, 31, 117-118.	2.2	1
156	Oligogenic Effects of 16p11.2 Copy Number Variation on Craniofacial Development. SSRN Electronic Journal, 0, , .	0.4	1
157	Behavioral Testing Design for Evaluation of Cognitive Disabilities. Current Protocols, 2022, 2, e382.	2.9	1
158	Preclinical evaluation of polyethylenimine-mediated RNA interference of Polo-Like Kinase 1 gene for ultrasound image-guided treatment of hepatocellular carcinoma. Journal of Hepatology, 2017, 66, S226.	3.7	0
159	31. Deciphering the Molecular Mechanisms Underlying the 16p11.2 Syndromes using Rodent Models. Biological Psychiatry, 2017, 81, S13-S14.	1.3	0
160	Introduction to Mammalian Genome Special Issue: Genome Editing. Mammalian Genome, 2017, 28, 235-236.	2.2	0
161	BIN1 Genetic Risk Factor for Alzheimer is Sufficient to Induce Early Structural Tract Alterations in Entorhinal-Hippocampal Area and Memory-Related Hippocampal Multi-Scale Impairments. SSRN Electronic Journal, 0, , .	0.4	0
162	Erythropoietin recapitulates hemodynamic features of hypoxia-induced pulmonary hypertension in mice. , 2016, , .		0

0

#	Article	IF	CITATIONS
163	Abstract 1296: CanPathPro—development of a platform for predictive pathway modelling using genetically engineered mouse models. , 2018, , .		Ο

164 Trisomie 21Â: l'espoir d'une thérapieÂ?. , 2020, Nº 118, 14-16.