X-J Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/980839/publications.pdf

Version: 2024-02-01

104	26,942	61	105
papers	citations	h-index	g-index
106	106	106	12988
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4873-4887.	4.4	174
2	SPIIR online coherent pipeline to search for gravitational waves from compact binary coalescences. Physical Review D, 2022, 105, .	4.7	31
3	High-precision search for dark photon dark matter with the Parkes Pulsar Timing Array. Physical Review Research, 2022, 4, .	3.6	16
4	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
5	Consistency of the Parkes Pulsar Timing Array Signal with a Nanohertz Gravitational-wave Background. Astrophysical Journal Letters, 2022, 932, L22.	8.3	21
6	Identifying and mitigating noise sources in precision pulsar timing data sets. Monthly Notices of the Royal Astronomical Society, 2021, 502, 478-493.	4.4	47
7	Standard-siren Cosmology Using Gravitational Waves from Binary Black Holes. Astrophysical Journal, 2021, 908, 215.	4.5	28
8	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
9	Heavy Double Neutron Stars: Birth, Midlife, and Death. Astrophysical Journal Letters, 2021, 909, L19.	8.3	24
10	On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophysical Journal Letters, 2021, 917, L19.	8.3	217
11	The Parkes pulsar timing array second data release: timing analysis. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2137-2153.	4.4	37
12	Optimized localization for gravitational waves from merging binaries. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3957-3965.	4.4	2
13	On the Large Apparent Black Hole Spin-orbit Misalignment Angle in GW200115. Astrophysical Journal Letters, 2021, 920, L20.	8.3	5
14	Constraining Cosmological Phase Transitions with the Parkes Pulsar Timing Array. Physical Review Letters, 2021, 127, 251303.	7.8	40
15	Is there a spectral turnover in the spin noise of millisecond pulsars?. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3264-3272.	4.4	11
16	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
17	On the origin of GW190425. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L64-L69.	3.3	46
18	The Parkes Pulsar Timing Array project: second data release. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	107

#	Article	IF	CITATIONS
19	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^¼Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
20	A pulsar-based time-scale from the International Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5951-5965.	4.4	51
21	Searching for gravitational-wave bursts from cosmic string cusps with the Parkes Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2020, 501, 701-712.	4.4	14
22	Toward the Unambiguous Identification of Supermassive Binary Black Holes through Bayesian Inference. Astrophysical Journal, 2020, 900, 117.	4.5	17
23	Precision Orbital Dynamics from Interstellar Scintillation Arcs for PSR J0437–4715. Astrophysical Journal, 2020, 904, 104.	4.5	39
24	Characterizing Astrophysical Binary Neutron Stars with Gravitational Waves. Astrophysical Journal Letters, 2020, 902, L12.	8.3	9
25	Commensal discovery of four fast radio bursts during Parkes Pulsar Timing Array observations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 868-875.	4.4	31
26	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
27	The International Pulsar Timing Array: second data release. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4666-4687.	4.4	191
28	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
29	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
30	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
31	The Mass Distribution of Galactic Double Neutron Stars. Astrophysical Journal, 2019, 876, 18.	4.5	115
32	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
33	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
34	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
35	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
36	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179

#	Article	IF	CITATIONS
37	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
38	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
39	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
40	The minimum and maximum gravitational-wave background from supermassive binary black holes. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2588-2596.	4.4	18
41	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
42	Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter. Physical Review D, 2018, 98, .	4.7	72
43	Studying the Solar system with the International Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5501-5516.	4.4	36
44	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
45	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
46	Inferring the population properties of binary neutron stars with gravitational-wave measurements of spin. Physical Review D, 2018, 98, .	4.7	52
47	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
48	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
49	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
50	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
51	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
52	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
53	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
54	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46

#	Article	IF	CITATIONS
55	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
56	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
57	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
58	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
59	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
60	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
61	Comparison of pulsar positions from timing and very long baseline astrometry. Monthly Notices of the Royal Astronomical Society, 2017, 469, 425-434.	4.4	20
62	Wide-band profile domain pulsar timing analysis. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3706-3727.	4.4	18
63	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
64	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
65	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
66	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
67	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
68	The International Pulsar Timing Array: First data release. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1267-1288.	4.4	332
69	THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE. Astrophysical Journal Letters, 2016, 828, L1.	8.3	33
70	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
71	Detectability of Gravitational Waves from High-Redshift Binaries. Physical Review Letters, 2016, 116, 101102.	7.8	15
72	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269

#	Article	IF	Citations
73	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
74	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
75	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
76	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
77	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
78	Gravitational-Wave Cosmology across 29 Decades in Frequency. Physical Review X, 2016, 6, .	8.9	113
79	Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1751-1769.	4.4	233
80	Detection and localization of continuous gravitational waves with pulsar timing arrays: the role of pulsar terms. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1317-1327.	4.4	26
81	Versatile directional searches for gravitational waves with Pulsar Timing Arrays. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3662-3673.	4.4	17
82	From spin noise to systematics: stochastic processes in the first International Pulsar Timing Array data release. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2161-2187.	4.4	82
83	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
84	Gravitational wave astronomy: the current status. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	26
85	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
86	Detection and localization of single-source gravitational waves with pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1650-1663.	4.4	37
87	Gravitational waves from binary supermassive black holes missing in pulsar observations. Science, 2015, 349, 1522-1525.	12.6	386
88	A study of multifrequency polarization pulse profiles of millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3223-3262.	4.4	109
89	PULSAR OBSERVATIONS OF EXTREME SCATTERING EVENTS. Astrophysical Journal, 2015, 808, 113.	4.5	75
90	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66

#	Article	IF	CITATION
91	Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1657-1671.	4.4	79
92	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
93	An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3709-3720.	4.4	98
94	Limitations in timing precision due to single-pulse shape variability in millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1463-1481.	4.4	94
95	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
96	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
97	Implementation of an $\frac{F}{s}$ -statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
98	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
99	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
100	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
101	On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers. Monthly Notices of the Royal Astronomical Society, 2013, 431, 882-899.	4.4	91
102	STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM COALESCING BINARY BLACK HOLES. Astrophysical Journal, 2011, 739, 86.	4.5	121
103	STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM NEUTRON STAR <i>r</i> rl>-MODE INSTABILITY REVISITED. Astrophysical Journal, 2011, 729, 59.	4.5	30
104	Observational upper limits on the gravitational wave production of core collapse supernovae. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L132-L136.	3.3	25