
Kazutoshi Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9807455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A stress-reduced passaging technique improves the viability of human pluripotent cells. Cell Reports Methods, 2022, 2, 100155.	1.4	2
2	Multi-omics approach reveals posttranscriptionally regulated genes are essential for human pluripotent stem cells. IScience, 2022, 25, 104289.	1.9	5
3	The pluripotent stem cell-specific transcript ESRG is dispensable for human pluripotency. PLoS Genetics, 2021, 17, e1009587.	1.5	20
4	Dual inhibition of TMPRSS2 and Cathepsin B prevents SARS-CoV-2 infection in iPS cells. Molecular Therapy - Nucleic Acids, 2021, 26, 1107-1114.	2.3	35
5	Critical Roles of Translation Initiation and RNA Uridylation in Endogenous Retroviral Expression and Neural Differentiation in Pluripotent Stem Cells. Cell Reports, 2020, 31, 107715.	2.9	21
6	Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews, 2019, 99, 79-114.	13.1	230
7	MYC Releases Early Reprogrammed Human Cells from Proliferation Pause via Retinoblastoma Protein Inhibition. Cell Reports, 2018, 23, 361-375.	2.9	23
8	Assessment of established techniques to determine developmental and malignant potential of human pluripotent stem cells. Nature Communications, 2018, 9, 1925.	5.8	76
9	<i>Nat1</i> promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 340-345.	3.3	81
10	ldentification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models. Scientific Reports, 2016, 6, 30013.	1.6	34
11	A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology, 2016, 17, 183-193.	16.1	684
12	Impaired adipogenic capacity in induced pluripotent stem cells from lipodystrophic patients with BSCL2 mutations. Metabolism: Clinical and Experimental, 2016, 65, 543-556.	1.5	24
13	Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes. Stem Cell Reports, 2015, 4, 170.	2.3	0
14	Robust InÂVitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell, 2015, 17, 178-194.	5.2	428
15	Present and future challenges of induced pluripotent stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140367.	1.8	118
16	A developmental framework for induced pluripotency. Development (Cambridge), 2015, 142, 3274-3285.	1.2	94
17	Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice. Stem Cells Translational Medicine, 2015, 4, 980-992.	1.6	130
18	Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm. Nature Communications, 2014, 5, 3678.	5.8	115

Каzutoshi Таканаshi

#	Article	IF	CITATIONS
19	Cellular Reprogramming. Cold Spring Harbor Perspectives in Biology, 2014, 6, a018606-a018606.	2.3	29
20	The let-7/LIN-41 Pathway Regulates Reprogramming to Human Induced Pluripotent Stem Cells by Controlling Expression of Prodifferentiation Genes. Cell Stem Cell, 2014, 14, 40-52.	5.2	200
21	Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12426-12431.	3.3	220
22	Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes. Stem Cell Reports, 2014, 2, 648-661.	2.3	100
23	Induction of pluripotency by defined factors. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2014, 90, 83-96.	1.6	30
24	The homeobox gene DLX4 promotes generation of human induced pluripotent stem cells. Scientific Reports, 2014, 4, 7283.	1.6	20
25	Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12172-12179.	3.3	117
26	Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nature Communications, 2013, 4, 1367.	5.8	266
27	Modeling Alzheimer's Disease with iPSCs Reveals Stress Phenotypes Associated with Intracellular Aβ and Differential Drug Responsiveness. Cell Stem Cell, 2013, 12, 487-496.	5.2	652
28	Induced Pluripotent Stem Cells. , 2013, , 197-218.		0
29	Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells. Scientific Reports, 2013, 3, 1978.	1.6	40
30	Induced pluripotent stem cells in medicine and biology. Development (Cambridge), 2013, 140, 2457-2461.	1.2	220
31	Response to Comment on "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells― Science Translational Medicine, 2013, 5, 188lr2.	5.8	5
32	Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20569-20574.	3.3	206
33	Induced pluripotent stem cells from CINCA syndrome patients as a model for dissecting somatic mosaicism and drug discovery. Blood, 2012, 120, 1299-1308.	0.6	61
34	Cellular reprogramming – lowering gravity on Waddington's epigenetic landscape. Journal of Cell Science, 2012, 125, 2553-60.	1.2	40
35	Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Science Translational Medicine, 2012, 4, 145ra104.	5.8	465
36	Derivation Conditions Impact X-Inactivation Status in Female Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2012, 11, 91-99.	5.2	99

#	Article	IF	CITATIONS
37	Induction of astrocyte differentiation from human induced pluripotent stem cells carrying mutant SOD1. Neuroscience Research, 2011, 71, e294.	1.0	Ο
38	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	9.4	509
39	Generation of disease-specific induced pluripotent stem cells from sporadic Parkinson's disease patients. Neuroscience Research, 2011, 71, e191.	1.0	1
40	Induced Pluripotent Stem Cells. , 2011, , 187-205.		0
41	Anti-AÎ ² Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer's Disease. PLoS ONE, 2011, 6, e25788.	1.1	156
42	ECAT11/L1td1 Is Enriched in ESCs and Rapidly Activated During iPSCGeneration, but It Is Dispensable for the Maintenance and Induction of Pluripotency. PLoS ONE, 2011, 6, e20461.	1.1	18
43	Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A. PLoS ONE, 2011, 6, e16734.	1.1	116
44	Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nature Protocols, 2010, 5, 418-428.	5.5	200
45	Direct reprogramming 101. Development Growth and Differentiation, 2010, 52, 319-333.	0.6	17
46	Transient activation of <i>c-MYC</i> expression is critical for efficient platelet generation from human induced pluripotent stem cells. Journal of Experimental Medicine, 2010, 207, 2817-2830.	4.2	295
47	Complete Genetic Correction of iPS Cells From Duchenne Muscular Dystrophy. Molecular Therapy, 2010, 18, 386-393.	3.7	238
48	Differentiation of induced pluripotent stem cells from ALS patients generates motor neurons. Neuroscience Research, 2010, 68, e197.	1.0	0
49	Dental Pulp Cells for Induced Pluripotent Stem Cell Banking. Journal of Dental Research, 2010, 89, 773-778.	2.5	200
50	Sirt1 plays an important role in mediating greater functionality of human ES/iPS-derived vascular endothelial cells. Atherosclerosis, 2010, 212, 42-47.	0.4	42
51	Transient activation ofc-MYCexpression is critical for efficient platelet generation from human induced pluripotent stem cells. Journal of Cell Biology, 2010, 191, i11-i11.	2.3	1
52	Induction and Isolation of Vascular Cells From Human Induced Pluripotent Stem Cells—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1100-1103.	1.1	183
53	Adipogenic differentiation of human induced pluripotent stem cells: Comparison with that of human embryonic stem cells. FEBS Letters, 2009, 583, 1029-1033.	1.3	140
54	Orderly hematopoietic development of induced pluripotent stem cells via Flkâ€1 ⁺ hemoangiogenic progenitors. Journal of Cellular Physiology, 2009, 221, 367-377.	2.0	41

Каzutoshi Таканаshi

#	Article	IF	CITATIONS
55	Characterization of Dendritic Cells and Macrophages Generated by Directed Differentiation from Mouse Induced Pluripotent Stem Cells. Stem Cells, 2009, 27, 1021-1031.	1.4	107
56	Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes To Cells, 2009, 14, 683-694.	0.5	136
57	Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature, 2009, 460, 1132-1135.	13.7	1,220
58	Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 2009, 27, 743-745.	9.4	811
59	Hypoxia Enhances the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2009, 5, 237-241.	5.2	687
60	Generation of retinal cells from mouse and human induced pluripotent stem cells. Neuroscience Letters, 2009, 458, 126-131.	1.0	402
61	Neurodegenerative disease-specific induced pluripotent Stem cells research. Neuroscience Research, 2009, 65, S10.	1.0	0
62	Generation and Characterization of Human Induced Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2009, 9, Unit 4A.2.	3.0	114
63	ERas is Expressed in Primate Embryonic Stem Cells but not Related to Tumorigenesis. Cell Transplantation, 2009, 18, 381-389.	1.2	15
64	Human Induced Pluripotent Stem Cells on Autologous Feeders. PLoS ONE, 2009, 4, e8067.	1.1	91
65	Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells. Science, 2008, 321, 699-702.	6.0	967
66	Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008, 26, 101-106.	9.4	2,583
67	Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 2007, 131, 861-872.	13.5	17,969
68	Generation of high quality iPS cells. Neuroscience Research, 2007, 58, S19.	1.0	3
69	Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2007, 2, 3081-3089.	5.5	945
70	Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006, 126, 663-676.	13.5	22,649
71	Identification of Genes Involved in Tumor-Like Properties of Embryonic Stem Cells. , 2006, 329, 449-458.		32
72	Role of the phosphoinositide 3-kinase pathway in mouse embryonic stem (ES) cells. Biochemical Society Transactions, 2005, 33, 1522.	1.6	106

#	Article	IF	CITATIONS
73	Differential Membrane Localization of ERas and Rheb, Two Ras-related Proteins Involved in the Phosphatidylinositol 3-Kinase/mTOR Pathway. Journal of Biological Chemistry, 2005, 280, 32768-32774.	1.6	90
74	Evolutionarily conserved non-AUG translation initiation in NAT1/p97/DAP5 (EIF4G2). Genomics, 2005, 85, 360-371.	1.3	54
75	Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature, 2003, 423, 541-545.	13.7	305
76	The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells. Cell, 2003, 113, 631-642.	13.5	2,892
77	Fbx15 Is a Novel Target of Oct3/4 but Is Dispensable for Embryonic Stem Cell Self-Renewal and Mouse Development. Molecular and Cellular Biology, 2003, 23, 2699-2708.	1.1	252
78	The Past, Present and Future of Induced Pluripotent Stem Cells. , 0, , .		0