
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/980105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nature Biotechnology, 2022, 40, 862-873.	17.5	44
2	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279.	28.4	157
3	A preclinical platform for assessing antitumor effects and systemic toxicities of cancer drug targets. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110557119.	7.1	5
4	Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. Science, 2022, 376, .	12.6	75
5	Exogenous and Endogenous Sources of Serine Contribute to Colon Cancer Metabolism, Growth, and Resistance to 5-Fluorouracil. Cancer Research, 2021, 81, 2275-2288.	0.9	55
6	Revealing ARID1A Function in Gastric Cancer from the Bottom Up. Cancer Discovery, 2021, 11, 1327-1329.	9.4	3
7	KRAS mutant rectal cancer cells interact with surrounding fibroblasts to deplete the extracellular matrix. Molecular Oncology, 2021, 15, 2766-2781.	4.6	7
8	Inducible hepatic expression of CREBH mitigates diet-induced obesity, insulin resistance, and hepatic steatosis in mice. Journal of Biological Chemistry, 2021, 297, 100815.	3.4	6
9	Dietary fructose improves intestinal cell survival and nutrient absorption. Nature, 2021, 597, 263-267.	27.8	133
10	WNT as a Driver and Dependency in Cancer. Cancer Discovery, 2021, 11, 2413-2429.	9.4	108
11	Engineering chromosome rearrangements in cancer. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	2
12	EpCAM (CD326) Regulates Intestinal Epithelial Integrity and Stem Cells via Rho-Associated Kinase. Cells, 2021, 10, 256.	4.1	9
13	Mitochondrial Ndufa4l2 Enhances Deposition of Lipids and Expression of Ca9 in the TRACK Model of Early Clear Cell Renal Cell Carcinoma. Frontiers in Oncology, 2021, 11, 783856.	2.8	6
14	RB depletion is required for the continuous growth of tumors initiated by loss of RB. PLoS Genetics, 2021, 17, e1009941.	3.5	6
15	Adenine base editing in an adult mouse model of tyrosinaemia. Nature Biomedical Engineering, 2020, 4, 125-130.	22.5	136
16	Generation of focal mutations and large genomic deletions in the pancreas using inducible <i>in vivo</i> genome editing. Carcinogenesis, 2020, 41, 334-344.	2.8	7
17	Exploiting the Therapeutic Interaction of WNT Pathway Activation and Asparaginase for Colorectal Cancer Therapy. Cancer Discovery, 2020, 10, 1690-1705.	9.4	38
18	An <i>In Vivo Kras</i> Allelic Series Reveals Distinct Phenotypes of Common Oncogenic Variants. Cancer Discovery, 2020, 10, 1654-1671.	9.4	71

#	Article	IF	CITATIONS
19	Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature, 2020, 585, 426-432.	27.8	145
20	Somatic Tissue Engineering in Mouse Models Reveals an Actionable Role for WNT Pathway Alterations in Prostate Cancer Metastasis. Cancer Discovery, 2020, 10, 1038-1057.	9.4	37
21	Base editing goes into hyperdrive. Nature Cell Biology, 2020, 22, 617-618.	10.3	0
22	Zonation of Ribosomal DNA Transcription Defines a Stem Cell Hierarchy in Colorectal Cancer. Cell Stem Cell, 2020, 26, 845-861.e12.	11.1	59
23	Lineage Reversion Drives WNT Independence in Intestinal Cancer. Cancer Discovery, 2020, 10, 1590-1609.	9.4	52
24	Detection of Marker-Free Precision Genome Editing and Genetic Variation through the Capture of Genomic Signatures. Cell Reports, 2020, 30, 3280-3295.e6.	6.4	7
25	GO: a functional reporter system to identify and enrich base editing activity. Nucleic Acids Research, 2020, 48, 2841-2852.	14.5	27
26	<i>In situ</i> CRISPR as9 base editing for the development of genetically engineered mouse models of breast cancer. EMBO Journal, 2020, 39, e102169.	7.8	40
27	Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. ELife, 2020, 9, .	6.0	7
28	Distinct Colorectal Cancer–Associated APC Mutations Dictate Response to Tankyrase Inhibition. Cancer Discovery, 2019, 9, 1358-1371.	9.4	54
29	Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nature Medicine, 2019, 25, 1739-1747.	30.7	100
30	A rectal cancer organoid platform to study individual responses to chemoradiation. Nature Medicine, 2019, 25, 1607-1614.	30.7	320
31	PIP4Ks Suppress Insulin Signaling through a Catalytic-Independent Mechanism. Cell Reports, 2019, 27, 1991-2001.e5.	6.4	33
32	Base editing the mammalian genome. Methods, 2019, 164-165, 100-108.	3.8	14
33	Murine Liver Organoids as a Genetically Flexible System to Study Liver Cancer In Vivo and In Vitro. Hepatology Communications, 2019, 3, 423-436.	4.3	25
34	Preclinical murine platform to evaluate therapeutic countermeasures against radiation-induced gastrointestinal syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20672-20678.	7.1	27
35	Tankyrase inhibition sensitizes cells to CDK4 blockade. PLoS ONE, 2019, 14, e0226645.	2.5	6
36	Genetic Liver-Specific AMPK Activation Protects against Diet-Induced Obesity and NAFLD. Cell Reports, 2019, 26, 192-208.e6.	6.4	202

#	Article	IF	CITATIONS
37	Systemic silencing of Phd2 causes reversible immune regulatory dysfunction. Journal of Clinical Investigation, 2019, 129, 3640-3656.	8.2	30
38	Tankyrase inhibition sensitizes cells to CDK4 blockade. , 2019, 14, e0226645.		0
39	Tankyrase inhibition sensitizes cells to CDK4 blockade. , 2019, 14, e0226645.		0
40	Tankyrase inhibition sensitizes cells to CDK4 blockade. , 2019, 14, e0226645.		0
41	Tankyrase inhibition sensitizes cells to CDK4 blockade. , 2019, 14, e0226645.		0
42	Modeling Cancer in the CRISPR Era. Annual Review of Cancer Biology, 2018, 2, 111-131.	4.5	15
43	Optimized base editors enable efficient editing in cells, organoids and mice. Nature Biotechnology, 2018, 36, 888-893.	17.5	269
44	CRISPR: Stressed about p53?. Trends in Molecular Medicine, 2018, 24, 731-733.	6.7	8
45	WNT Signaling and Colorectal Cancer. Current Colorectal Cancer Reports, 2017, 13, 101-110.	0.5	222
46	Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nature Biotechnology, 2017, 35, 577-582.	17.5	188
47	R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine. Nature Communications, 2017, 8, 15945.	12.8	97
48	Somatic Genome Editing Goes Viral. Trends in Molecular Medicine, 2016, 22, 831-833.	6.7	2
49	Pten loss promotes MAPK pathway dependency in HER2/neu breast carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3030-3035.	7.1	52
50	Immunofluorescent Staining of Mouse Intestinal Stem Cells. Bio-protocol, 2016, 6, .	0.4	24
51	Isolation, Culture, and Maintenance of Mouse Intestinal Stem Cells. Bio-protocol, 2016, 6, .	0.4	41
52	Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015, 528, 560-564.	27.8	818
53	Inducible in vivo genome editing with CRISPR-Cas9. Nature Biotechnology, 2015, 33, 390-394.	17.5	429
54	Apc Restoration Promotes Cellular Differentiation and Reestablishes Crypt Homeostasis in Colorectal Cancer. Cell, 2015, 161, 1539-1552.	28.9	432

#	Article	IF	CITATIONS
55	The Polarity Protein Scribble Regulates Myelination and Remyelination in the Central Nervous System. PLoS Biology, 2015, 13, e1002107.	5.6	31
56	Modeling Disease In Vivo With CRISPR/Cas9. Trends in Molecular Medicine, 2015, 21, 609-621.	6.7	91
57	Vitamin C selectively kills <i>KRAS</i> and <i>BRAF</i> mutant colorectal cancer cells by targeting GAPDH. Science, 2015, 350, 1391-1396.	12.6	722
58	Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature, 2015, 525, 543-547.	27.8	414
59	Conditional Reverse Tet-Transactivator Mouse Strains for the Efficient Induction of TRE-Regulated Transgenes in Mice. PLoS ONE, 2014, 9, e95236.	2.5	79
60	Inducible InÂVivo Silencing of Brd4 Identifies Potential Toxicities of Sustained BET Protein Inhibition. Cell Reports, 2014, 8, 1919-1929.	6.4	144
61	A modular and flexible ESC-based mouse model of pancreatic cancer. Genes and Development, 2014, 28, 85-97.	5.9	70
62	p53-Dependent Nestin Regulation Links Tumor Suppression to Cellular Plasticity in Liver Cancer. Cell, 2014, 158, 579-592.	28.9	176
63	Creating Transgenic shRNA Mice by Recombinase-Mediated Cassette Exchange. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot077057.	0.3	6
64	Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacology & Toxicology, 2013, 14, 58.	2.4	24
65	Variability of Inducible Expression across the Hematopoietic System of Tetracycline Transactivator Transgenic Mice. PLoS ONE, 2013, 8, e54009.	2.5	26
66	A pipeline for the generation of shRNA transgenic mice. Nature Protocols, 2012, 7, 374-393.	12.0	146
67	Life in the Fast Lane: Mammalian Disease Models in the Genomics Era. Cell, 2012, 148, 1099-1109.	28.9	70
68	A Rapid and Scalable System for Studying Gene Function in Mice Using Conditional RNA Interference. Cell, 2011, 145, 145-158.	28.9	278
69	Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nature Biotechnology, 2011, 29, 79-83.	17.5	235
70	Reversible suppression of an essential gene in adult mice using transgenic RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7113-7118.	7.1	49
71	SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia. Journal of Clinical Investigation, 2011, 121, 4257-4267.	8.2	153
72	Polarity Regulators and the Control of Epithelial Architecture, Cell Migration, and Tumorigenesis. International Review of Cytology, 2007, 262, 253-302.	6.2	105

#	Article	IF	CITATIONS
73	The Scribble and Par complexes in polarity and migration: friends or foes?. Trends in Cell Biology, 2006, 16, 622-630.	7.9	137
74	A Network of PDZ-Containing Proteins Regulates T Cell Polarity and Morphology during Migration and Immunological Synapse Formation. Immunity, 2005, 22, 737-748.	14.3	237
75	hScrib is a functional homologue of the Drosophila tumour suppressor Scribble. Oncogene, 2003, 22, 9225-9230.	5.9	104