Gianfranco Mattia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/979887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	pH-responsive oleic acid based nanocarriers: Melanoma treatment strategies. International Journal of Pharmaceutics, 2022, 613, 121391.	5.2	8
2	Different Susceptibilities of Human Melanoma Cell Lines to G2/M Blockage and Cell Death Activation in Response to the Estrogen Receptor β agonist LY500307. Journal of Cancer, 2022, 13, 1573-1587.	2.5	2
3	SCD5-dependent inhibition of SPARC secretion hampers metastatic spreading and favors host immunity in a TNBC murine model. Oncogene, 2022, 41, 4055-4065.	5.9	10
4	Biomarkers for Diagnosis, Prognosis and Response to Immunotherapy in Melanoma. Cancers, 2021, 13, 2875.	3.7	14
5	The Sex-Related Interplay between TME and Cancer: On the Critical Role of Estrogen, MicroRNAs and Autophagy. Cancers, 2021, 13, 3287.	3.7	15
6	Tumor-derived extracellular vesicles and microRNAs: Functional roles, diagnostic, prognostic and therapeutic options. Cytokine and Growth Factor Reviews, 2020, 51, 75-83.	7.2	25
7	Sex and Gender Disparities in Melanoma. Cancers, 2020, 12, 1819.	3.7	69
8	Circulating miR34a levels as a potential biomarker in the follow-up of Ewing sarcoma. Journal of Cell Communication and Signaling, 2020, 14, 335-347.	3.4	8
9	Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Frontiers in Endocrinology, 2019, 10, 733.	3.5	33
10	Joint action of miRâ€126 and MAPK/PI3K inhibitors against metastatic melanoma. Molecular Oncology, 2019, 13, 1836-1854.	4.6	15
11	Cell death-based treatments of melanoma:conventional treatments and new therapeutic strategies. Cell Death and Disease, 2018, 9, 112.	6.3	94
12	SCD5 restored expression favors differentiation and epithelial-mesenchymal reversion in advanced melanoma. Oncotarget, 2018, 9, 7567-7581.	1.8	17
13	In bone metastasis miR-34a-5p absence inversely correlates with Met expression, while Met oncogene is unaffected by miR-34a-5p in non-metastatic and metastatic breast carcinomas. Carcinogenesis, 2017, 38, 492-503.	2.8	24
14	Combining Type I Interferons and 5-Aza-2′-Deoxycitidine to Improve Anti-Tumor Response against Melanoma. Journal of Investigative Dermatology, 2017, 137, 159-169.	0.7	60
15	Gut Mesenchymal Stromal Cells in Immunity. Stem Cells International, 2017, 2017, 1-6.	2.5	10
16	AP2α controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression. Oncogene, 2016, 35, 3016-3026.	5.9	14
17	SCD5â€induced oleic acid production reduces melanoma malignancy by intracellular retention of SPARC and cathepsin B. Journal of Pathology, 2015, 236, 315-325.	4.5	34
18	Prognostic significance of miR-34a in Ewing sarcoma is associated with cyclin D1 and ki-67 expression. Annals of Oncology, 2014, 25, 2080-2086.	1.2	35

GIANFRANCO MATTIA

#	Article	IF	CITATIONS
19	The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miRâ€221&222â€câ€FOS pathway. International Journal of Cancer, 2013, 133, 879-892.	5.1	55
20	miR-126&126* Restored Expressions Play a Tumor Suppressor Role by Directly Regulating ADAM9 and MMP7 in Melanoma. PLoS ONE, 2013, 8, e56824.	2.5	80
21	miRâ€34a predicts survival of Ewing's sarcoma patients and directly influences cell chemoâ€sensitivity and malignancy. Journal of Pathology, 2012, 226, 796-805.	4.5	128
22	Constitutive activation of the ETSâ€lâ€miRâ€222 circuitry in metastatic melanoma. Pigment Cell and Melanoma Research, 2011, 24, 953-965.	3.3	36
23	Long–term platelet production assessed in NOD/SCID mice injected with cord blood CD34+ cells, thrombopoietin–amplified in clinical grade serum–free culture. Experimental Hematology, 2008, 36, 244-252.	0.4	29
24	MicroRNA-221 and -222 pathway controls melanoma progression. Expert Review of Anticancer Therapy, 2008, 8, 1759-1765.	2.4	63
25	The Promyelocytic Leukemia Zinc Finger–MicroRNA-221/-222 Pathway Controls Melanoma Progression through Multiple Oncogenic Mechanisms. Cancer Research, 2008, 68, 2745-2754.	0.9	357
26	HDAC inhibition is associated to valproic acid induction of early megakaryocytic markers. Experimental Cell Research, 2006, 312, 1590-1597.	2.6	15
27	Engraftment in NOD/SCID Mice of TPO Amplified CB Cells To Promote Platelet Development Blood, 2006, 108, 3647-3647.	1.4	Ο
28	Factor-V expression in platelets from human megakaryocytic culture. British Journal of Haematology, 2005, 128, 108-111.	2.5	23
29	Role of PLZF in melanoma progression. Oncogene, 2004, 23, 4567-4576.	5.9	62
30	HIV-1 Nef Induces the Release of Inflammatory Factors from Human Monocyte/Macrophages: Involvement of Nef Endocytotic Signals and NF-κB Activation. Journal of Immunology, 2003, 170, 1716-1727.	0.8	124
31	Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood, 2002, 99, 888-897.	1.4	210
32	SH2-containing inositol phosphatase (SHIP-1) transiently translocates to raft domains and modulates CD16-mediated cytotoxicity in human NK cells. Blood, 2002, 100, 4581-4589.	1.4	64
33	Stromal cell–derived factor 1α increases polyploidization of megakaryocytes generated by human hematopoietic progenitor cells. Blood, 2001, 97, 2587-2595.	1.4	67
34	<i>cis</i> Expression of the F12 Human Immunodeficiency Virus (HIV) Nef Allele Transforms the Highly Productive NL4-3 HIV Type 1 to a Replication-Defective Strain: Involvement of both Env gp41 and CD4 Intracytoplasmic Tails. Journal of Virology, 2000, 74, 483-492.	3.4	32
35	T-tropic human immunodeficiency virus (HIV) type 1 Nef protein enters human monocyte–macrophages and induces resistance to HIV replication: a possible mechanism of HIV T-tropic emergence in AIDS. Journal of General Virology, 2000, 81, 2905-2917.	2.9	37
36	Enforced expression of HOXB7 promotes hematopoietic stem cell proliferation and myeloid-restricted progenitor differentiation. Oncogene, 1999, 18, 1993-2001.	5.9	54

#	Article	IF	CITATIONS
37	HIV/gp120 and PMA/ionomycin induced apoptosis but not activation induced cell death require PKC for Fas-L upregulation. FEBS Letters, 1998, 436, 461-465.	2.8	11
38	Transduction of the SkBr3 breast carcinoma cell line with the HOXB7 gene induces bFGF expression, increases cell proliferation and reduces growth factor dependence. Oncogene, 1998, 16, 3285-3289.	5.9	78
39	Factor VII in Subjects at Risk for Thromboembolism: Activation or Increased Synthesis?. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 1987, 17, 340-343.	0.3	3