Lorena Longareetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9792900/publications.pdf

Version: 2024-02-01

236925 345221 3,267 36 25 36 citations h-index g-index papers 36 36 36 4337 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unravelling the Role of PAX2 Mutation in Human Focal Segmental Glomerulosclerosis. Biomedicines, 2021, 9, 1808.	3.2	2
2	Effect of the 3D Artificial Nichoid on the Morphology and Mechanobiological Response of Mesenchymal Stem Cells Cultured In Vitro. Cells, 2020, 9, 1873.	4.1	27
3	Copper-dependent biological effects ofÂparticulate matter produced by brake systems on lung alveolar cells. Archives of Toxicology, 2020, 94, 2965-2979.	4.2	25
4	CRISPR-Cas9-Mediated Correction of the G189R-PAX2 Mutation in Induced Pluripotent Stem Cells from a Patient with Focal Segmental Glomerulosclerosis. CRISPR Journal, 2019, 2, 108-120.	2.9	4
5	BRAF Signaling Pathway Inhibition, Podocyte Injury, and Nephrotic Syndrome. American Journal of Kidney Diseases, 2017, 70, 145-150.	1.9	25
6	Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nature Communications, 2017, 8, 983.	12.8	124
7	Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Scientific Reports, 2017, 7, 11518.	3.3	89
8	A previously unrecognized role of C3a in proteinuric progressive nephropathy. Scientific Reports, 2016, 6, 28445.	3.3	22
9	Generation of functional podocytes from human induced pluripotent stem cells. Stem Cell Research, 2016, 17, 130-139.	0.7	65
10	Endothelial cell activation by hemodynamic shear stress derived from arteriovenous fistula for hemodialysis access. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H49-H59.	3.2	35
11	Regression of Renal Disease by Angiotensin II Antagonism Is Caused by Regeneration of Kidney Vasculature. Journal of the American Society of Nephrology: JASN, 2016, 27, 699-705.	6.1	36
12	Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease. PLoS ONE, 2015, 10, e0120235.	2. 5	17
13	Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II. PLoS ONE, 2015, 10, e0127172.	2.5	16
14	Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury. Journal of Clinical Investigation, 2015, 125, 715-726.	8.2	335
15	Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts. Stem Cell Reports, 2015, 4, 685-698.	4.8	27
16	β-Arrestin-1 Drives Endothelin-1–Mediated Podocyte Activation and Sustains Renal Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 523-533.	6.1	63
17	Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway. American Journal of Pathology, 2013, 183, 119-130.	3.8	39
18	Transfer of Growth Factor Receptor mRNA Via Exosomes Unravels the Regenerative Effect of Mesenchymal Stem Cells. Stem Cells and Development, 2013, 22, 772-780.	2.1	300

#	Article	IF	Citations
19	Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury. Stem Cells, 2010, 28, 513-522.	3.2	161
20	Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. American Journal of Physiology - Renal Physiology, 2009, 297, F1448-F1456.	2.7	114
21	Disruption of the Ang II type 1 receptor promotes longevity in mice. Journal of Clinical Investigation, 2009, 119, 524-530.	8.2	434
22	Insulin-Like Growth Factor-1 Sustains Stem Cell–Mediated Renal Repair. Journal of the American Society of Nephrology: JASN, 2007, 18, 2921-2928.	6.1	294
23	DnlKK2-Transfected Dendritic Cells Induce a Novel Population of Inducible Nitric Oxide Synthase???Expressing CD4+CD25??? Cells with Tolerogenic Properties. Transplantation, 2007, 83, 474-484.	1.0	21
24	Involvement of renal tubular tollâ€ike receptor 9 in the development of tubulointerstitial injury in systemic lupus. Arthritis and Rheumatism, 2007, 56, 1569-1578.	6.7	61
25	Pathophysiologic Implications of Reduced Podocyte Number in a Rat Model of Progressive Glomerular Injury. American Journal of Pathology, 2006, 168, 42-54.	3.8	134
26	Shigatoxin-Induced Endothelin-1 Expression in Cultured Podocytes Autocrinally Mediates Actin Remodeling. American Journal of Pathology, 2006, 169, 1965-1975.	3.8	92
27	Adeno-Associated Virus–Mediated CTLA4lg Gene Transfer Protects MHC-Mismatched Renal Allografts from Chronic Rejection. Journal of the American Society of Nephrology: JASN, 2006, 17, 1665-1672.	6.1	31
28	Dendritic Cells Genetically Engineered with Adenoviral Vector Encoding dnIKK2 Induce the Formation of Potent CD4+ T-Regulatory Cells. Transplantation, 2005, 79, 1056-1061.	1.0	32
29	In Response to Protein Load Podocytes Reorganize Cytoskeleton and Modulate Endothelin-1 Gene. American Journal of Pathology, 2005, 166, 1309-1320.	3.8	151
30	Targeted Deletion of Angiotensin II Type 1A Receptor Does not Protect Mice from Progressive Nephropathy of Overload Proteinuria. Journal of the American Society of Nephrology: JASN, 2004, 15, 2666-2674.	6.1	31
31	Favorable Effect of Cotransfection with TGF- \hat{l}^2 and CTLA4lg of the Donor Kidney on Allograft Survival. American Journal of Nephrology, 2004, 24, 275-283.	3.1	12
32	Vasopeptidase inhibitor restores the balance of vasoactive hormones in progressive nephropathy. Kidney International, 2004, 66, 1959-1965.	5. 2	52
33	Combining lisinopril and L-arginine slows disease progression and reduces endothelin-1 in passive Heymann nephritis. Kidney International, 2003, 64, 857-863.	5. 2	13
34	Transforming Growth Factor- \hat{l}^21 Is Up-Regulated by Podocytes in Response to Excess Intraglomerular Passage of Proteins. American Journal of Pathology, 2002, 161, 2179-2193.	3.8	138
35	Methylprednisolone normalizes superoxide anion production by polymorphs from patients with ANCA-positive vasculitides. Kidney International, 1993, 44, 215-220.	5. 2	30
36	A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney International, 1993, 44, 440-444.	5 . 2	215