Lorena Longareetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9792900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of the Ang II type 1 receptor promotes longevity in mice. Journal of Clinical Investigation, 2009, 119, 524-530.	8.2	434
2	Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury. Journal of Clinical Investigation, 2015, 125, 715-726.	8.2	335
3	Transfer of Growth Factor Receptor mRNA Via Exosomes Unravels the Regenerative Effect of Mesenchymal Stem Cells. Stem Cells and Development, 2013, 22, 772-780.	2.1	300
4	Insulin-Like Growth Factor-1 Sustains Stem Cell–Mediated Renal Repair. Journal of the American Society of Nephrology: JASN, 2007, 18, 2921-2928.	6.1	294
5	A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney International, 1993, 44, 440-444.	5.2	215
6	Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury. Stem Cells, 2010, 28, 513-522.	3.2	161
7	In Response to Protein Load Podocytes Reorganize Cytoskeleton and Modulate Endothelin-1 Gene. American Journal of Pathology, 2005, 166, 1309-1320.	3.8	151
8	Transforming Growth Factor-β1 Is Up-Regulated by Podocytes in Response to Excess Intraglomerular Passage of Proteins. American Journal of Pathology, 2002, 161, 2179-2193.	3.8	138
9	Pathophysiologic Implications of Reduced Podocyte Number in a Rat Model of Progressive Glomerular Injury. American Journal of Pathology, 2006, 168, 42-54.	3.8	134
10	Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nature Communications, 2017, 8, 983.	12.8	124
11	Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. American Journal of Physiology - Renal Physiology, 2009, 297, F1448-F1456.	2.7	114
12	Shigatoxin-Induced Endothelin-1 Expression in Cultured Podocytes Autocrinally Mediates Actin Remodeling. American Journal of Pathology, 2006, 169, 1965-1975.	3.8	92
13	Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Scientific Reports, 2017, 7, 11518.	3.3	89
14	Generation of functional podocytes from human induced pluripotent stem cells. Stem Cell Research, 2016, 17, 130-139.	0.7	65
15	β-Arrestin-1 Drives Endothelin-1–Mediated Podocyte Activation and Sustains Renal Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 523-533.	6.1	63
16	Involvement of renal tubular tollâ€like receptor 9 in the development of tubulointerstitial injury in systemic lupus. Arthritis and Rheumatism, 2007, 56, 1569-1578.	6.7	61
17	Vasopeptidase inhibitor restores the balance of vasoactive hormones in progressive nephropathy. Kidney International, 2004, 66, 1959-1965.	5.2	52
18	Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway. American Journal of Pathology, 2013, 183, 119-130.	3.8	39

LORENA LONGAREETTI

#	Article	IF	CITATIONS
19	Regression of Renal Disease by Angiotensin II Antagonism Is Caused by Regeneration of Kidney Vasculature. Journal of the American Society of Nephrology: JASN, 2016, 27, 699-705.	6.1	36
20	Endothelial cell activation by hemodynamic shear stress derived from arteriovenous fistula for hemodialysis access. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H49-H59.	3.2	35
21	Dendritic Cells Genetically Engineered with Adenoviral Vector Encoding dnIKK2 Induce the Formation of Potent CD4+ T-Regulatory Cells. Transplantation, 2005, 79, 1056-1061.	1.0	32
22	Targeted Deletion of Angiotensin II Type 1A Receptor Does not Protect Mice from Progressive Nephropathy of Overload Proteinuria. Journal of the American Society of Nephrology: JASN, 2004, 15, 2666-2674.	6.1	31
23	Adeno-Associated Virus–Mediated CTLA4Ig Gene Transfer Protects MHC-Mismatched Renal Allografts from Chronic Rejection. Journal of the American Society of Nephrology: JASN, 2006, 17, 1665-1672.	6.1	31
24	Methylprednisolone normalizes superoxide anion production by polymorphs from patients with ANCA-positive vasculitides. Kidney International, 1993, 44, 215-220.	5.2	30
25	Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts. Stem Cell Reports, 2015, 4, 685-698.	4.8	27
26	Effect of the 3D Artificial Nichoid on the Morphology and Mechanobiological Response of Mesenchymal Stem Cells Cultured In Vitro. Cells, 2020, 9, 1873.	4.1	27
27	BRAF Signaling Pathway Inhibition, Podocyte Injury, and Nephrotic Syndrome. American Journal of Kidney Diseases, 2017, 70, 145-150.	1.9	25
28	Copper-dependent biological effects ofÂparticulate matter produced by brake systems on lung alveolar cells. Archives of Toxicology, 2020, 94, 2965-2979.	4.2	25
29	A previously unrecognized role of C3a in proteinuric progressive nephropathy. Scientific Reports, 2016, 6, 28445.	3.3	22
30	DnIKK2-Transfected Dendritic Cells Induce a Novel Population of Inducible Nitric Oxide Synthase???Expressing CD4+CD25??? Cells with Tolerogenic Properties. Transplantation, 2007, 83, 474-484.	1.0	21
31	Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease. PLoS ONE, 2015, 10, e0120235.	2.5	17
32	Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II. PLoS ONE, 2015, 10, e0127172.	2.5	16
33	Combining lisinopril and L-arginine slows disease progression and reduces endothelin-1 in passive Heymann nephritis. Kidney International, 2003, 64, 857-863.	5.2	13
34	Favorable Effect of Cotransfection with TGF-β and CTLA4lg of the Donor Kidney on Allograft Survival. American Journal of Nephrology, 2004, 24, 275-283.	3.1	12
35	CRISPR-Cas9-Mediated Correction of the G189R-PAX2 Mutation in Induced Pluripotent Stem Cells from a Patient with Focal Segmental Glomerulosclerosis. CRISPR Journal, 2019, 2, 108-120.	2.9	4
36	Unravelling the Role of PAX2 Mutation in Human Focal Segmental Glomerulosclerosis. Biomedicines, 2021, 9, 1808.	3.2	2