
Axelle Cadoret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9791654/publications.pdf Version: 2024-02-01

AVELLE CADORET

#	Article	IF	CITATIONS
1	Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology, 2022, 76, 1360-1375.	7.3	30
2	Role of Angiogenesis in the Pathogenesis of NAFLD. Journal of Clinical Medicine, 2021, 10, 1338.	2.4	19
3	Cholangiopathy aggravation is caused by VDR ablation and alleviated by VDR-independent vitamin D signaling in ABCB4 knockout mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166067.	3.8	9
4	Inhibition of receptor-interacting protein kinase 1 improves experimental non-alcoholic fatty liver disease. Journal of Hepatology, 2020, 72, 627-635.	3.7	84
5	Endoplasmic reticulum stress induces inverse regulations of major functions in portal myofibroblasts during liver fibrosis progression. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3688-3696.	3.8	13
6	During the progression of liver fibrosis, myofibroblasts develop endoplasmic reticulum stress that both decreases their proliferation and increases their pro-angiogenic activity. Journal of Hepatology, 2018, 68, S400.	3.7	0
7	Culture Model of Rat Portal Myofibroblasts. Frontiers in Physiology, 2016, 7, 120.	2.8	11
8	Portal myofibroblasts promote vascular remodeling underlying cirrhosis formation through the release of microparticles. Hepatology, 2015, 61, 1041-1055.	7.3	102
9	Origins and functions of liver myofibroblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 948-954.	3.8	114
10	Vitamin D nuclear receptor deficiency promotes cholestatic liver injury by disruption of biliary epithelial cell junctions in mice. Hepatology, 2013, 58, 1401-1412.	7.3	43
11	Distinct proteomic features of two fibrogenic liver cell populations: Hepatic stellate cells and portal myofibroblasts. Proteomics, 2010, 10, 1017-1028.	2.2	56
12	921 PANGENOMIC PROFILING INDICATES DISTINCT FUNCTIONS OF PORTAL AND HEPATIC STELLATE CELLS-DERIVED RAT LIVER MYOFIBROBLASTS IN WOUND HEALING. Journal of Hepatology, 2010, 52, S357.	3.7	1
13	IGF-1R Contributes to Stress-Induced Hepatocellular Damage in Experimental Cholestasis. American Journal of Pathology, 2009, 175, 627-635.	3.8	9
14	328 Reduced cholestatic liver injury in mice deleted for insulin-like growth factor 1 receptor in hepatocytes. Journal of Hepatology, 2006, 44, S126-S127.	3.7	0
15	729 New markers for different rat liver fibrogenic cells. Journal of Hepatology, 2006, 44, S268.	3.7	Ο
16	Hepatocyte proliferation during liver regeneration is impaired in mice with liverâ€specific IGFâ€1R knockout. FASEB Journal, 2006, 20, 773-775.	0.5	109
17	c-myc-induced hepatocarcinogenesis in the absence of IGF-I receptor. International Journal of Cancer, 2005, 114, 668-672.	5.1	22
18	GSK-3β reactivation with LY294002 sensitizes hepatoma cells to chemotherapy-induced apoptosis. International Journal of Oncology, 2005, 27, 215.	3.3	17

Axelle Cadoret

#	Article	IF	CITATIONS
19	GSK-3β inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression. Experimental Cell Research, 2004, 300, 354-364.	2.6	71
20	Dysregulation of glycogen synthase kinase-3β signaling in hepatocellular carcinoma cells. Hepatology, 2002, 36, 1528-1536.	7.3	60
21	New targets of β-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene, 2002, 21, 8293-8301.	5.9	366
22	Dysregulation of glycogen synthase kinase-3β signaling in hepatocellular carcinoma cells. Hepatology, 2002, 36, 1528-1536.	7.3	45
23	Insulin and IGF-1 stimulate the β-catenin pathway through two signalling cascades involving CSK-3β inhibition and Ras activation. Oncogene, 2001, 20, 252-259.	5.9	298
24	Insulin-Mediated Cell Proliferation and Survival Involve Inhibition of c-Jun N-terminal Kinases through a Phosphatidylinositol 3-Kinase- and Mitogen-Activated Protein Kinase Phosphatase-1-Dependent Pathway*. Endocrinology, 2000, 141, 922-931.	2.8	40
25	Insulin-Mediated Cell Proliferation and Survival Involve Inhibition of c-Jun N-terminal Kinases through a Phosphatidylinositol 3-Kinase- and Mitogen-Activated Protein Kinase Phosphatase-1-Dependent Pathway. Endocrinology, 2000, 141, 922-931.	2.8	20
26	Insulin Antiapoptotic Signaling Involves Insulin Activation of the Nuclear Factor κB-dependent Survival Genes Encoding Tumor Necrosis Factor Receptor-associated Factor 2 and Manganese-superoxide Dismutase. Journal of Biological Chemistry, 1999, 274, 30596-30602.	3.4	51
27	Downregulation of the colon tumour-suppressor homeobox gene Cdx-2 by oncogenic ras. Oncogene, 1999, 18, 87-92.	5.9	76
28	A Role for Nuclear Factor κB in the Antiapoptotic Function of Insulin. Journal of Biological Chemistry, 1998, 273, 2931-2938.	3.4	99
29	Down-regulation of NF-κB activity and NF-κB p65 subunit expression by ras and polyoma middle T oncogenes in human colonic Caco-2 cells. Oncogene, 1997, 14, 1589-1600	5.9	26