Cristiana Ciobanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/979058/publications.pdf

Version: 2024-02-01

113 papers 6,679 citations

43 h-index

61984

79 g-index

117 all docs

117 docs citations

117 times ranked 2578 citing authors

#	Article	IF	Citations
1	Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica Et Cosmochimica Acta, 2009, 73, 4761-4791.	3.9	581
2	Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chemical Geology, 2009, 264, 101-121.	3.3	332
3	Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geology Reviews, 2011, 39, 188-217.	2.7	327
4	Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Mineralium Deposita, 2009, 44, 765-791.	4.1	227
5	Arsenopyrite-Pyrite Association in an Orogenic Gold Ore: Tracing Mineralization History from Textures and Trace Elements. Economic Geology, 2013, 108, 1273-1283.	3.8	210
6	Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. American Mineralogist, 2015, 100, 548-569.	1.9	169
7	Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geology Reviews, 2016, 77, 97-116.	2.7	166
8	Gold-telluride nanoparticles revealed in arsenic-free pyrite. American Mineralogist, 2012, 97, 1515-1518.	1.9	150
9	Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids. Geology, 2008, 36, 815.	4.4	139
10	Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study. Geochimica Et Cosmochimica Acta, 2011, 75, 5423-5443.	3.9	137
11	Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geology Reviews, 2004, 24, 315-370.	2.7	134
12	Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities. Minerals (Basel,) Tj ETQq0 0 0 r	gB ½/ Øverl	ock:1190 Tf 50 2
13	Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: A LA-ICP-MS studyBornite mineral chemistry. Geochimica Et Cosmochimica Acta, 2011, 75, 6473-6496.	3.9	118
14	Trace elements in hydrothermal chalcopyrite. Mineralogical Magazine, 2018, 82, 59-88.	1.4	115
15	Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via Â-XANES spectroscopy. American Mineralogist, 2012, 97, 476-479.	1.9	114
16	Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt. Mineralium Deposita, 2002, 37, 541-567.	4.1	112
17	Bismuth tellurides and sulphosalts from the Larga hydrothermal system, Metaliferi Mts , Romania: Paragenesis and genetic significance. Mineralogical Magazine, 2004, 68, 301-321.	1.4	106
18	†Invisible gold' in bismuth chalcogenides. Geochimica Et Cosmochimica Acta, 2009, 73, 1970-1999.	3.9	106

#	Article	IF	Citations
19	Focussed ion beam–transmission electron microscopy applications in ore mineralogy: Bridging microand nanoscale observations. Ore Geology Reviews, 2011, 42, 6-31.	2.7	105
20	Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Mineralogy and Petrology, 2014, 108, 873-890.	1.1	101
21	Petrogenetic significance of Au–Bi–Te–S associations: The example of Maldon, Central Victorian gold province, Australia. Lithos, 2010, 116, 1-17.	1.4	97
22	Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide–copper–gold deposit, Yorke Peninsula, South Australia. Lithos, 2014, 184-187, 456-477.	1.4	94
23	MINERALS OF THE SYSTEM BITE SES RELATED TO THE TETRADYMITE ARCHETYPE: REVIEW OF CLASSIFICATION AND COMPOSITIONAL VARIATION. Canadian Mineralogist, 2007, 45, 665-708.	1.0	93
24	Gold scavenged by bismuth melts: An example from Alpine shear-remobilizates in the HighiÅŸ Massif, Romania. Mineralogy and Petrology, 2006, 87, 351-384.	1.1	91
25	Multivariate Analysis of an LA-ICP-MS Trace Element Dataset for Pyrite. Mathematical Geosciences, 2012, 44, 823-842.	2.4	90
26	Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: A geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambrian Research, 2013, 238, 129-147.	2.7	90
27	Distribution and Substitution Mechanism of Ge in a Ge-(Fe)-Bearing Sphalerite. Minerals (Basel,) Tj ETQq1 1 0.784	1314 rgBT 2.0	/Gyerlock 1
28	A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia. Geochimica Et Cosmochimica Acta, 2014, 125, 440-465.	3.9	89
29	Preface – Special Issue: Telluride and selenide minerals in gold deposits – how and why?. Mineralogy and Petrology, 2006, 87, 163-169.	1.1	83
30	Sulfur isotope fractionation in pyrite during laser ablation: Implications for laser ablation multiple collector inductively coupled plasma mass spectrometry mapping. Chemical Geology, 2017, 450, 223-234.	3.3	77
31	Indium mineralisation in A-type granites in southeastern Finland: Insights into mineralogy and partitioning between coexisting minerals. Chemical Geology, 2011, 284, 62-73.	3.3	76
32	The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing. Hydrometallurgy, 2011, 108, 226-228.	4.3	68
33	Mapping of Sulfur Isotopes and Trace Elements in Sulfides by LA-(MC)-ICP-MS: Potential Analytical Problems, Improvements and Implications. Minerals (Basel, Switzerland), 2016, 6, 110.	2.0	68
34	Skarn formation and trace elements in garnet and associated minerals from Zhibula copper deposit, Gangdese Belt, southern Tibet. Lithos, 2016, 262, 213-231.	1.4	65
35	Trace element heterogeneity in molybdenite fingerprints stages of mineralization. Chemical Geology, 2013, 347, 175-189.	3.3	62
36	The Niujiaotang Cd-rich zinc deposit, Duyun, Guizhou province, southwest China: ore genesis and mechanisms of cadmium concentration. Mineralium Deposita, 2012, 47, 683-700.	4.1	56

#	Article	IF	CITATIONS
37	Uraninite from the Olympic Dam IOCG-U-Ag deposit: Linking textural and compositional variation to temporal evolution. American Mineralogist, 2016, 101, 1295-1320.	1.9	55
38	Textures and U-W-Sn-Mo signatures in hematite from the Olympic Dam Cu-U-Au-Ag deposit, South Australia: Defining the archetype for IOCG deposits. Ore Geology Reviews, 2017, 91, 173-195.	2.7	54
39	Indium distribution in sphalerite from sulfide–oxide–silicate skarn assemblages: a case study of the Dulong Zn–Sn–In deposit, Southwest China. Mineralium Deposita, 2021, 56, 307-324.	4.1	53
40	Apatite at Olympic Dam, South Australia: A petrogenetic tool. Lithos, 2016, 262, 470-485.	1.4	52
41	Iron isotope behavior during fluid/rock interaction in K-feldspar alteration zone – A model for pyrite in gold deposits from the Jiaodong Peninsula, East China. Geochimica Et Cosmochimica Acta, 2018, 222, 94-116.	3.9	50
42	Rare Earth Element Behaviour in Apatite from the Olympic Dam Cu–U–Au–Ag Deposit, South Australia. Minerals (Basel, Switzerland), 2017, 7, 135.	2.0	48
43	Minor and Trace Elements in Natural Tetrahedrite-Tennantite: Effects on Element Partitioning among Base Metal Sulphides. Minerals (Basel, Switzerland), 2017, 7, 17.	2.0	46
44	EARLY, DEEP MAGNETITE-FLUORAPATITE MINERALIZATION AT THE OLYMPIC DAM Cu-U-Au-Ag DEPOSIT, SOUTH AUSTRALIA*. Economic Geology, 2017, 112, 1531-1542.	3.8	46
45	Feldspar evolution in the Roxby Downs Granite, host to Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam, South Australia. Ore Geology Reviews, 2017, 80, 838-859.	2.7	44
46	Mineral chemistry of Rare Earth Element (REE) mineralization, Browns Ranges, Western Australia. Lithos, 2013, 172-173, 192-213.	1.4	40
47	Albitization and redistribution of REE and Y in IOCG systems: Insights from Moonta-Wallaroo, Yorke Peninsula, South Australia. Lithos, 2014, 208-209, 178-201.	1.4	40
48	Ore minerals down to the nanoscale: Cu-(Fe)-sulphides from the iron oxide copper gold deposit at Olympic Dam, South Australia. Ore Geology Reviews, 2017, 81, 1218-1235.	2.7	38
49	Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au–Sb deposit, South China. Mineralium Deposita, 2019, 54, 591-610.	4.1	38
50	Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting. Mineralogical Magazine, 2001, 65, 351-372.	1.4	37
51	COMPOSITIONAL DATA FOR Bi-Pb TELLUROSULFIDES. Canadian Mineralogist, 2007, 45, 417-435.	1.0	36
52	Advances and Opportunities in Ore Mineralogy. Minerals (Basel, Switzerland), 2017, 7, 233.	2.0	36
53	A multi-technique evaluation of hydrothermal hematite U Pb isotope systematics: Implications for ore deposit geochronology. Chemical Geology, 2019, 513, 54-72.	3.3	36
54	Tellurides from Sunrise Dam gold deposit, Yilgarn Craton, Western Australia: a new occurrence of nagy \tilde{A}_i gite. Mineralogy and Petrology, 2007, 91, 249-270.	1.1	34

#	Article	IF	Citations
55	Matrix-Matched Iron-Oxide Laser Ablation ICP-MS U–Pb Geochronology Using Mixed Solution Standards. Minerals (Basel, Switzerland), 2016, 6, 85.	2.0	34
56	The Wirrda Well and Acropolis prospects, Gawler Craton, South Australia: Insights into evolving fluid conditions through apatite chemistry. Journal of Geochemical Exploration, 2017, 181, 276-291.	3.2	34
57	OPENING THE MAGMATIC-HYDROTHERMAL WINDOW: HIGH-PRECISION U-Pb GEOCHRONOLOGY OF THE MESOPROTEROZOIC OLYMPIC DAM Cu-U-Au-Ag DEPOSIT, SOUTH AUSTRALIA. Economic Geology, 2020, 115, 1855-1870.	3.8	34
58	Chemical-structural modularity in the tetradymite group: A HRTEM study. American Mineralogist, 2009, 94, 517-534.	1.9	33
59	210Pb and 210Po in Geological and Related Anthropogenic Materials: Implications for Their Mineralogical Distribution in Base Metal Ores. Minerals (Basel, Switzerland), 2018, 8, 211.	2.0	32
60	Intergrowths of bismuth sulphosalts from the Ocna de Fier Fe-skarn deposit, Banat, Southwest Romania. European Journal of Mineralogy, 2000, 12, 899-917.	1.3	31
61	The future of biotechnology for gold exploration and processing. Minerals Engineering, 2012, 32, 45-53.	4.3	30
62	Focused Ion Beam and Advanced Electron Microscopy for Minerals: Insights and Outlook from Bismuth Sulphosalts. Minerals (Basel, Switzerland), 2016, 6, 112.	2.0	30
63	Nanogeoscience in ore systems research: Principles, methods, and applications. Ore Geology Reviews, 2011, 42, 1-5.	2.7	28
64	Defining early stages of IOCG systems: evidence from iron oxides in the outer shell of the Olympic Dam deposit, South Australia. Mineralium Deposita, 2020, 55, 429-452.	4.1	28
65	Mineralogy of tin-sulfides in the Zijinshan porphyry–epithermal system, Fujian Province, China. Ore Geology Reviews, 2016, 72, 682-698.	2.7	27
66	Silician Magnetite: Si–Fe-Nanoprecipitates and Other Mineral Inclusions in Magnetite from the Olympic Dam Deposit, South Australia. Minerals (Basel, Switzerland), 2019, 9, 311.	2.0	27
67	Rare Earth Element Fluorocarbonate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia. Minerals (Basel, Switzerland), 2017, 7, 202.	2.0	26
68	Feldspar mineralogy and rare-earth element (re)mobilization in iron-oxide copper gold systems from South Australia: a nanoscale study. Mineralogical Magazine, 2018, 82, S173-S197.	1.4	26
69	Defining IOCG signatures through compositional data analysis: A case study of lithogeochemical zoning from the Olympic Dam deposit, South Australia. Ore Geology Reviews, 2019, 105, 86-101.	2.7	26
70	Short-Range Stacking Disorder in Mixed-Layer Compounds: A HAADF STEM Study of BastnÃ s ite-Parisite Intergrowths. Minerals (Basel, Switzerland), 2017, 7, 227.	2.0	25
71	Numerical Modeling of REE Fractionation Patterns in Fluorapatite from the Olympic Dam Deposit (South Australia). Minerals (Basel, Switzerland), 2018, 8, 342.	2.0	25
72	Scheelite geochemistry in porphyry-skarn W-Mo systems: A case study from the Gaojiabang Deposit, East China. Ore Geology Reviews, 2019, 113, 103084.	2.7	25

#	Article	IF	Citations
73	Another look at nagy \tilde{A}_i gite from the type locality, S \$check $\{m\{a\}\}$ \$ c \$check $\{m\{a\}\}$ \$ r \tilde{A}^{\otimes} mb, Romania: Replacement, chemical variation and petrogenetic implications. Mineralogy and Petrology, 2008, 93, 273-307.	1.1	23
74	Hematite geochemistry and geochronology resolve genetic and temporal links among iron-oxide copper gold systems, Olympic Dam district, South Australia. Precambrian Research, 2019, 335, 105480.	2.7	22
75	Crystal chemistry of titanite from the Roxby Downs Granite, South Australia: insights into petrogenesis, subsolidus evolution and hydrothermal alteration. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	22
76	LAMELLAR MINERALS OF THE CUPROBISMUTITE SERIES AND RELATED PADERAITE: A NEW OCCURRENCE AND IMPLICATIONS. Canadian Mineralogist, 2003, 41, 441-456.	1.0	21
77	Chemical zoning and lattice distortion in uraninite from Olympic Dam, South Australia. American Mineralogist, 2016, 101, 2351-2354.	1.9	21
78	Nanoscale Study of Clausthalite-Bearing Symplectites in Cu-Au-(U) Ores: Implications for Ore Genesis. Minerals (Basel, Switzerland), 2018, 8, 67.	2.0	18
79	Petrography and trace element signatures in silicates and Fe–Ti-oxides from the Lanjiahuoshan deposit, Panzhihua layered intrusion, Southwest China. Lithos, 2017, 294-295, 164-183.	1.4	17
80	Petrography and trace element signatures of iron-oxides in deposits from the Middleback Ranges, South Australia: From banded iron formation to ore. Ore Geology Reviews, 2018, 93, 337-360.	2.7	17
81	Replacement of Uraninite By Bornite <i>Via</i> Coupled Dissolution-Reprecipitation: Evidence From Texture and Microstructure. Canadian Mineralogist, 2016, 54, 1369-1383.	1.0	16
82	Discrimination and Variance Structure of Trace Element Signatures in Fe-Oxides: A Case Study of BIF-Mineralisation from the Middleback Ranges, South Australia. Mathematical Geosciences, 2018, 50, 381-415.	2.4	16
83	Detection of Trace Elements/Isotopes in Olympic Dam Copper Concentrates by nanoSIMS. Minerals (Basel, Switzerland), 2019, 9, 336.	2.0	16
84	REE-, Sr-, Ca-aluminum-phosphate-sulfate minerals of the alunite supergroup and their role as hosts for radionuclides. American Mineralogist, 2019, 104, 1806-1819.	1.9	16
85	Micron- to nano-scale intergrowths among members of the cuprobismutite series and padÄraite: HRTEM and microanalytical evidence. Mineralogical Magazine, 2004, 68, 279-300.	1.4	16
86	Postmagmatic magnetite–apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	15
87	Zircon at the Nanoscale Records Metasomatic Processes Leading to Large Magmatic–Hydrothermal Ore Systems. Minerals (Basel, Switzerland), 2019, 9, 364.	2.0	15
88	Rare Earth Element Phosphate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia: Recognizing Temporal-Spatial Controls On Ree Mineralogy in an Evolved IOCG System. Canadian Mineralogist, 2019, 57, 3-24.	1.0	15
89	Gold behavior in intermediate sulfidation epithermal systems: A case study from the Zhengguang gold deposit, Heilongjiang Province, NE-China. Ore Geology Reviews, 2019, 106, 446-462.	2.7	15
90	Crystals from the Powellite-Scheelite Series at the Nanoscale: A Case Study from the Zhibula Cu Skarn, Gangdese Belt, Tibet. Minerals (Basel, Switzerland), 2019, 9, 340.	2.0	14

#	Article	IF	CITATIONS
91	Mineralization-alteration footprints in the Olympic Dam IOCG district, South Australia: The Acropolis prospect. Journal of Geochemical Exploration, 2019, 205, 106333.	3.2	14
92	Multivariate Statistical Analysis of Trace Elements in Pyrite: Prediction, Bias and Artefacts in Defining Mineral Signatures. Minerals (Basel, Switzerland), 2020, 10, 61.	2.0	14
93	SOBOLEVSKITE, TAIMYRITE, AND Pt2CuFe (TULAMEENITE?) IN COMPLEX MASSIVE TALNAKHITE ORE, NORIL'SK OREFIELD, RUSSIA. Canadian Mineralogist, 2002, 40, 329-340.	1.0	13
94	Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu-Au systems in the Olympic Cu-Au Province, South Australia. Mineralogy and Petrology, 2018, 112, 145-172.	1.1	13
95	Uptake of trace elements by baryte during copper ore processing: A case study from Olympic Dam, South Australia. Minerals Engineering, 2019, 135, 83-94.	4.3	13
96	GraÂianite, MnBi2S4, a new mineral from the Baia Bihor skarn, Romania. American Mineralogist, 2014, 99, 1163-1170.	1.9	12
97	Copper-Arsenic Nanoparticles in Hematite: Fingerprinting Fluid-Mineral Interaction. Minerals (Basel,) Tj ETQq1 1 ().784314 2.0	rgBT /Overlo
98	Iron-oxides constrain BIF evolution in terranes with protracted geological histories: The Iron Count prospect, Middleback Ranges, South Australia. Lithos, 2019, 324-325, 20-38.	1.4	12
99	Trace element distributions in (Cu)-Pb-Sb sulfosalts from the Gutaishan Au-Sb deposit, South China: Implications for formation of high fineness native gold. American Mineralogist, 2019, 104, 425-437.	1.9	11
100	Trace element substitution and grain-scale compositional heterogeneity in enargite. Ore Geology Reviews, 2019, 111, 103004.	2.7	10
101	Mineralogy of Zirconium in Iron-Oxides: A Micron- to Nanoscale Study of Hematite Ore from Peculiar Knob, South Australia. Minerals (Basel, Switzerland), 2019, 9, 244.	2.0	9
102	The Basil Cu–Co deposit, Eastern Arunta Region, Northern Territory, Australia: A metamorphosed volcanic-hosted massive sulphide deposit. Ore Geology Reviews, 2014, 56, 141-158.	2.7	8
103	Petrography and geochemistry of granitoids from the Samphire Pluton, South Australia: Implications for uranium mineralisation in overlying sediments. Lithos, 2018, 300-301, 1-19.	1.4	8
104	Polytypism and Polysomatism in Mixed-Layer Chalcogenides: Characterization of PbBi4Te4S3 and Inferences for Ordered Phases in the Aleksite Series. Minerals (Basel, Switzerland), 2019, 9, 628.	2.0	8
105	Nanoscale Study of Titanomagnetite from the Panzhihua Layered Intrusion, Southwest China: Multistage Exsolutions Record Ore Formation. Minerals (Basel, Switzerland), 2019, 9, 513.	2.0	7
106	Petrographic and geochronological constraints on the granitic basement to the Middleback Ranges, South Australia. Precambrian Research, 2019, 324, 170-193.	2.7	6
107	Nanoscale intergrowths in the bastnÄste–synchysite series record transition toward thermodynamic equilibrium. MRS Bulletin, 2022, 47, 250-257.	3.5	5
108	A NEW OCCURRENCE OF LAROSITE FROM THE TINNSJA Cu-Ag DEPOSIT, TELEMARK COUNTY, NORWAY. I. PARAGENESIS AND CHEMICAL COMPOSITION. Canadian Mineralogist, 2010, 48, 1569-1573.	1.0	4

#	Article	IF	CITATIONS
109	Chessboard structures: Atom-scale imaging of homologs from the kobellite series. American Mineralogist, 2019, 104, 459-462.	1.9	4
110	Synthesis of U-Pb doped hematite using a hydrated ferric oxide approach. Journal of Crystal Growth, 2019, 513, 48-57.	1.5	3
111	Editorial for Special Issue "Minerals Down to the Nanoscale: A Glimpse at Ore-Forming Processes― Minerals (Basel, Switzerland), 2019, 9, 692.	2.0	2
112	Nanoscale study of lamellar exsolutions in clinopyroxene from olivine gabbro: recording crystallization sequences in iron-rich layered intrusions. American Mineralogist, 2018, , .	1.9	1
113	Mineralization signatures of the magnetite-dominant Acropolis prospect, Olympic Dam IOCG district, South Australia. ASEG Extended Abstracts, 2019, 2019, 1-5.	0.1	0