Ji-wook Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9783960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pseudo single domain NiZn-γFe2O3 colloidal superparamagnetic nanoparticles for MRI-guided hyperthermia application. Nanotechnology, 2022, 33, 135701.	2.6	1
2	Concentration-dependent oscillation of specific loss power in magnetic nanofluid hyperthermia. Scientific Reports, 2021, 11, 733.	3.3	19
3	Reliable evaluation method of heating power of magnetic nanofluids to directly predict the tumor temperature during hyperthermia. Scientific Reports, 2021, 11, 22028.	3.3	4
4	Iron Oxide-Coated Dextran Nanoparticles with Efficient Renal Clearance for Musculoskeletal Magnetic Resonance Imaging. ACS Applied Nano Materials, 2021, 4, 12943-12948.	5.0	3
5	Pseudo-single domain colloidal superparamagnetic nanoparticles designed at a physiologically tolerable AC magnetic field for clinically safe hyperthermia. Nanoscale, 2021, 13, 19484-19492.	5.6	7
6	Heat Induction Behavior of Injected Superparamagnetic Nanofluid Interpreted by Mass and Heat Transfer for Clinical Magnetic Hyperthermia Applications. IEEE Nanotechnology Magazine, 2021, 20, 933-943.	2.0	0
7	Magnetic Control of Axon Navigation in Reprogrammed Neurons. Nano Letters, 2019, 19, 6517-6523.	9.1	22
8	Design of Magnetically Labeled Cells (Mag-Cells) for in Vivo Control of Stem Cell Migration and Differentiation. Nano Letters, 2018, 18, 838-845.	9.1	43
9	Magnetic Nanotweezers for Interrogating Biological Processes in Space and Time. Accounts of Chemical Research, 2018, 51, 839-849.	15.6	41
10	Single-cell mechanogenetics using monovalent magnetoplasmonic nanoparticles. Nature Protocols, 2017, 12, 1871-1889.	12.0	48
11	High-order synchronization of hair cell bundles. Scientific Reports, 2016, 6, 39116.	3.3	8
12	Magnetic Force Nanoprobe for Direct Observation of Audio Frequency Tonotopy of Hair Cells. Nano Letters, 2016, 16, 3885-3891.	9.1	9
13	A Mechanogenetic Toolkit for Interrogating Cell Signaling in Space and Time. Cell, 2016, 165, 1507-1518.	28.9	143
14	Magnetic Nanoparticles for Ultrafast Mechanical Control of Inner Ear Hair Cells. ACS Nano, 2014, 8, 6590-6598.	14.6	71
15	Magnetic Nanoparticles for Multi-Imaging and Drug Delivery. Molecules and Cells, 2013, 35, 274-284.	2.6	80
16	A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nature Materials, 2012, 11, 1038-1043.	27.5	208
17	Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology, 2011, 6, 418-422.	31.5	1,197