David C Van Essen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/978384/publications.pdf

Version: 2024-02-01

140 papers 45,015 citations

79 h-index 127 g-index

159 all docs

159 docs citations

times ranked

159

25448 citing authors

#	Article	IF	CITATIONS
1	Toward next-generation primate neuroscience: A collaboration-based strategic plan for integrative neuroimaging. Neuron, 2022, 110, 16-20.	8.1	22
2	A spatially embedded cortical connectome reveals complex transformations. Neuron, 2022, 110, 185-187.	8.1	0
3	Is Neuroscience FAIR? A Call for Collaborative Standardisation of Neuroscience Data. Neuroinformatics, 2022, 20, 507-512.	2.8	23
4	Anatomical variability, multi-modal coordinate systems, and precision targeting in the marmoset brain. Neurolmage, 2022, 250, 118965.	4.2	10
5	Graded Variation in T1w/T2w Ratio during Adolescence: Measurement, Caveats, and Implications for Development of Cortical Myelin. Journal of Neuroscience, 2022, 42, $5681-5694$.	3.6	28
6	Empirical transmit field bias correction of T1w/T2w myelin maps. Neurolmage, 2022, 258, 119360.	4.2	20
7	Modelling white matter in gyral blades as a continuous vector field. Neurolmage, 2021, 227, 117693.	4.2	15
8	Leslie Ungerleider, 1946–2020: Who, what, and where. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2102784118.	7.1	1
9	The nonhuman primate neuroimaging and neuroanatomy project. Neurolmage, 2021, 229, 117726.	4.2	57
10	Minimal specifications for non-human primate MRI: Challenges in standardizing and harmonizing data collection. NeuroImage, 2021, 236, 118082.	4.2	22
11	The Human Connectome Project: A retrospective. Neurolmage, 2021, 244, 118543.	4.2	114
12	Brain/MINDS beyond human brain MRI project: A protocol for multi-level harmonization across brain disorders throughout the lifespan. NeuroImage: Clinical, 2021, 30, 102600.	2.7	34
13	Comparative connectomics of the primate social brain. Neurolmage, 2021, 245, 118693.	4.2	23
14	The Mind of a Mouse. Cell, 2020, 182, 1372-1376.	28.9	127
15	A 2020 view of tension-based cortical morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32868-32879.	7.1	74
16	Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing. Neurolmage, 2020, 215, 116800.	4.2	67
17	Accelerating the Evolution of Nonhuman Primate Neuroimaging. Neuron, 2020, 105, 600-603.	8.1	92
18	A Domain-General Cognitive Core Defined in Multimodally Parcellated Human Cortex. Cerebral Cortex, 2020, 30, 4361-4380.	2.9	197

#	Article	IF	CITATIONS
19	Diffusion Tensor Model links to Neurite Orientation Dispersion and Density Imaging at high b-value in Cerebral Cortical Gray Matter. Scientific Reports, 2019, 9, 12246.	3.3	49
20	Ciftify: A framework for surface-based analysis of legacy MR acquisitions. NeuroImage, 2019, 197, 818-826.	4.2	101
21	Classification of temporal ICA components for separating global noise from fMRI data: Reply to Power. NeuroImage, 2019, 197, 435-438.	4.2	40
22	Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics. Neuron, 2019, 101, 1181-1194.e13.	8.1	271
23	Cerebral cortical folding, parcellation, and connectivity in humans, nonhuman primates, and mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26173-26180.	7.1	130
24	Reply to Barton and Montgomery: A case for preferential prefrontal cortical expansion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5-6.	7.1	6
25	The Lifespan Human Connectome Project in Aging: An overview. Neurolmage, 2019, 185, 335-348.	4.2	186
26	Genomic kinship construction to enhance genetic analyses in the human connectome project data. Human Brain Mapping, 2019, 40, 1677-1688.	3.6	14
27	Dynamic patterns of cortical expansion during folding of the preterm human brain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3156-3161.	7.1	94
28	A gyral coordinate system predictive of fibre orientations. Neurolmage, 2018, 176, 417-430.	4.2	13
29	Neurite imaging reveals microstructural variations in human cerebral cortical gray matter. Neurolmage, 2018, 182, 488-499.	4.2	164
30	The Mouse Cortical Connectome, Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Connectivity Profiles. Neuron, 2018, 97, 698-715.e10.	8.1	169
31	Multimodal surface matching with higher-order smoothness constraints. Neurolmage, 2018, 167, 453-465.	4.2	219
32	The Human Connectome Project 7 Tesla retinotopy dataset: Description and population receptive field analysis. Journal of Vision, 2018, 18, 23.	0.3	139
33	Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. Neurolmage, 2018, 183, 972-984.	4.2	290
34	Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5183-E5192.	7.1	203
35	The relationship between spatial configuration and functional connectivity of brain regions. ELife, 2018, 7, .	6.0	184
36	Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. NeuroImage, 2018, 181, 692-717.	4.2	223

#	Article	IF	Citations
37	Development and Evolution of Cerebral and Cerebellar Cortex. Brain, Behavior and Evolution, 2018, 91, 158-169.	1.7	97
38	The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5–21 year olds. NeuroImage, 2018, 183, 456-468.	4.2	184
39	Parcellating Cerebral Cortex: How Invasive Animal Studies Inform Noninvasive Mapmaking in Humans. Neuron, 2018, 99, 640-663.	8.1	103
40	Scaling of human brain size. Science, 2018, 360, 1184-1185.	12.6	24
41	The impact of traditional neuroimaging methods on the spatial localization of cortical areas. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6356-E6365.	7.1	255
42	The Brain Analysis Library of Spatial maps and Atlases (BALSA) database. NeuroImage, 2017, 144, 270-274.	4.2	69
43	Best practices in data analysis and sharing in neuroimaging using MRI. Nature Neuroscience, 2017, 20, 299-303.	14.8	482
44	The heritability of multi-modal connectivity in human brain activity. ELife, 2017, 6, .	6.0	107
45	Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates. PLoS Biology, 2016, 14, e1002512.	5.6	158
46	The Human Connectome Project's neuroimaging approach. Nature Neuroscience, 2016, 19, 1175-1187.	14.8	825
47	A multi-modal parcellation of human cerebral cortex. Nature, 2016, 536, 171-178.	27.8	3,634
48	Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey. Journal of Neuroscience, 2016, 36, 6758-6770.	3.6	318
49	Comparison of cortical folding measures for evaluation of developing human brain. NeuroImage, 2016, 125, 780-790.	4.2	92
50	ConnectomeDBâ€"Sharing human brain connectivity data. NeuroImage, 2016, 124, 1102-1107.	4.2	80
51	The human connectome in health and psychopathology. World Psychiatry, 2015, 14, 154-157.	10.4	43
52	Canonical genetic signatures of the adult human brain. Nature Neuroscience, 2015, 18, 1832-1844.	14.8	503
53	Cortical structural abnormalities in very preterm children at 7years of age. NeuroImage, 2015, 109, 469-479.	4.2	74
54	Early postnatal myelin content estimate of white matter via $T1w/T2w$ ratio., 2015, 9417, .		19

#	Article	IF	CITATIONS
55	Heritability of fractional anisotropy in human white matter: A comparison of Human Connectome Project and ENIGMA-DTI data. Neurolmage, 2015, 111, 300-311.	4.2	227
56	A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience, 2015, 18, 1565-1567.	14.8	782
57	Measuring macroscopic brain connections in vivo. Nature Neuroscience, 2015, 18, 1546-1555.	14.8	292
58	Human Connectome Project., 2015,, 1408-1411.		5
59	Correspondences between retinotopic areas and myelin maps in human visual cortex. Neurolmage, 2014, 99, 509-524.	4.2	117
60	In vivo architectonics: A cortico-centric perspective. Neurolmage, 2014, 93, 157-164.	4.2	60
61	Trends and properties of human cerebral cortex: Correlations with cortical myelin content. Neurolmage, 2014, 93, 165-175.	4.2	369
62	Alterations in Brain Structure and Neurodevelopmental Outcome in Preterm Infants Hospitalized in Different Neonatal Intensive Care Unit Environments. Journal of Pediatrics, 2014, 164, 52-60.e2.	1.8	279
63	MSM: A new flexible framework for Multimodal Surface Matching. Neurolmage, 2014, 100, 414-426.	4.2	532
64	Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. NeuroImage, 2013, 76, 313-324.	4.2	203
65	Cartography and Connectomes. Neuron, 2013, 80, 775-790.	8.1	88
66	Cortical High-Density Counterstream Architectures. Science, 2013, 342, 1238406.	12.6	468
67	Human Connectome Project informatics: Quality control, database services, and data visualization. Neurolmage, 2013, 80, 202-219.	4.2	356
68	Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neurolmage, 2013, 80, 125-143.	4.2	851
69	Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 2013, 17, 666-682.	7.8	802
70	The WU-Minn Human Connectome Project: An overview. Neurolmage, 2013, 80, 62-79.	4.2	4,282
71	Function in the human connectome: Task-fMRI and individual differences in behavior. NeuroImage, 2013, 80, 169-189.	4.2	1,259
72	A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule. Neuron, 2013, 80, 184-197.	8.1	372

#	Article	lF	Citations
73	The role of long-range connections on the specificity of the macaque interareal cortical network. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5187-5192.	7.1	172
74	Resting-state fMRI in the Human Connectome Project. NeuroImage, 2013, 80, 144-168.	4.2	1,367
75	The minimal preprocessing pipelines for the Human Connectome Project. Neurolmage, 2013, 80, 105-124.	4.2	4,042
76	Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. NeuroImage, 2013, 80, 80-104.	4.2	769
77	Human Connectome Project. , 2013, , 1-4.		11
78	Parcellations and Hemispheric Asymmetries of Human Cerebral Cortex Analyzed on Surface-Based Atlases. Cerebral Cortex, 2012, 22, 2241-2262.	2.9	561
79	Cortical Parcellations of the Macaque Monkey Analyzed on Surface-Based Atlases. Cerebral Cortex, 2012, 22, 2227-2240.	2.9	162
80	Temporally-independent functional modes of spontaneous brain activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3131-3136.	7.1	696
81	Cortical cartography and Caret software. Neurolmage, 2012, 62, 757-764.	4.2	102
82	Informatics and Data Mining Tools and Strategies for the Human Connectome Project. Frontiers in Neuroinformatics, 2011, 5, 4.	2.5	484
83	Mapping Human Cortical Areas <i>In Vivo</i> Based on Myelin Content as Revealed by T1- and T2-Weighted MRI. Journal of Neuroscience, 2011, 31, 11597-11616.	3.6	1,185
84	Similar patterns of cortical expansion during human development and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13135-13140.	7.1	588
85	A Surface-Based Analysis of Hemispheric Asymmetries and Folding of Cerebral Cortex in Term-Born Human Infants. Journal of Neuroscience, 2010, 30, 2268-2276.	3.6	285
86	Lost in localization â€" But found with foci?!. NeuroImage, 2009, 48, 14-17.	4.2	19
87	Defining functional areas in individual human brains using resting functional connectivity MRI. Neurolmage, 2008, 41, 45-57.	4.2	541
88	Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia. NeuroImage, 2008, 41, 835-848.	4.2	109
89	Cortical Folding Abnormalities in Autism Revealed by Surface-Based Morphometry. Journal of Neuroscience, 2007, 27, 11725-11735.	3.6	253
90	Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex. Neuron, 2007, 56, 209-225.	8.1	469

#	Article	IF	Citations
91	On navigating the human cerebral cortex: Response to †in praise of tedious anatomy'. Neurolmage, 2007, 37, 1050-1054.	4.2	44
92	Neurons in monkey visual area V2 encode combinations of orientations. Nature Neuroscience, 2007, 10, 1313-1321.	14.8	210
93	Cause and effect in cortical folding. Nature Reviews Neuroscience, 2007, 8, 989-989.	10.2	5
94	Symmetry of Cortical Folding Abnormalities in Williams Syndrome Revealed by Surface-Based Analyses. Journal of Neuroscience, 2006, 26, 5470-5483.	3.6	171
95	Corticocortical and thalamocortical information flow in the primate visual system. Progress in Brain Research, 2005, 149, 173-185.	1.4	88
96	A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. NeuroImage, 2005, 28, 635-662.	4.2	1,062
97	The Processing of Visual Shape in the Cerebral Cortex of Human and Nonhuman Primates: A Functional Magnetic Resonance Imaging Study. Journal of Neuroscience, 2004, 24, 2551-2565.	3.6	238
98	Visual Activation in Prefrontal Cortex is Stronger in Monkeys than in Humans. Journal of Cognitive Neuroscience, 2004, 16, 1505-1516.	2.3	55
99	Comparative mapping of higher visual areas in monkeys and humans. Trends in Cognitive Sciences, 2004, 8, 315-324.	7.8	584
100	Towards a Quantitative, Probabilistic Neuroanatomy of Cerebral Cortex. Cortex, 2004, 40, 211-212.	2.4	17
101	Surface-based approaches to spatial localization and registration in primate cerebral cortex. NeuroImage, 2004, 23, S97-S107.	4.2	188
102	Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans. Neuron, 2003, 39, 555-568.	8.1	309
103	Windows on the brain: the emerging role of atlases and databases in neuroscience. Current Opinion in Neurobiology, 2002, 12, 574-579.	4.2	246
104	W. Maxwell Cowan (1931–2002). Nature, 2002, 418, 600-600.	27.8	0
105	Surface-Based Atlases of Cerebellar Cortex in the Human, Macaque, and Mouse. Annals of the New York Academy of Sciences, 2002, 978, 468-479.	3.8	80
106	Integrated software for surface-based analyses of cerebral cortex. NeuroImage, 2001, 13, 148.	4.2	4
107	Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research, 2001, 41, 1359-1378.	1.4	401
108	Response profiles to texture border patterns in area V1. Visual Neuroscience, 2000, 17, 421-436.	1.0	77

#	Article	IF	CITATIONS
109	Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. Journal of Comparative Neurology, 2000, 428, 112-137.	1.6	750
110	Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. Journal of Comparative Neurology, 2000, 428, 79-111.	1.6	376
111	Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. , 2000, 428, 112.		6
112	Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex., 2000, 428, 79.		3
113	Anatomical evidence for the posterior boundary of area 2 in the macaque monkey. Somatosensory & Motor Research, 1999, 16, 382-390.	0.9	18
114	Response modulation by texture surround in primate area V1: Correlates of "popout―under anesthesia. Visual Neuroscience, 1999, 16, 15-34.	1.0	281
115	Surface-Based Analyses of the Human Cerebral Cortex. , 1999, , 337-361.		24
116	Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. NeuroReport, 1998, 9, 2153-2158.	1.2	90
117	A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 1997, 385, 313-318.	27.8	1,527
118	Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex., 1997, 379, 21-47.		145
119	Development of connections within and between areas V1 and V2 of macaque monkeys. , 1996, 372, 327-342.		60
120	Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System. Journal of Cognitive Neuroscience, 1996, 8, 1-28.	2.3	222
121	Lack of topography in the spinal cord projection of the rabbit soleus muscle. Journal of Comparative Neurology, 1995, 351, 404-414.	1.6	3
122	Computational Methods for Reconstructing and Unfolding the Cerebral Cortex. Cerebral Cortex, 1995, 5, 506-517.	2.9	114
123	Multiple processing streams in occipitotemporal visual cortex. Nature, 1994, 371, 151-154.	27.8	165
124	Visual cortex: cartography, connectivity, and concurrent processing. Current Biology, 1992, 2, 236.	3.9	2
125	Blur into focus. Nature, 1990, 343, 419-420.	27.8	36
126	Synaptic dynamics at the neuromuscular junction: Mechanisms and models. Journal of Neurobiology, 1990, 21, 223-249.	3.6	67

#	Article	IF	CITATIONS
127	Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Visual Neuroscience, 1990, 5, 67-81.	1.0	131
128	PARALLEL PROCESSING OF VISUAL INFORMATION. , 1990, , 103-128.		53
129	Competitive elimination of neuromuscular synapses. Nature, 1988, 331, 21-22.	27.8	8
130	Competition favouring inactive over active motor neurons during synapse elimination. Nature, 1987, 328, 422-426.	27.8	89
131	Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology, 1987, 266, 535-555.	1.6	296
132	Ventral posterior visual area of the macaque: Visual topography and areal boundaries. Journal of Comparative Neurology, 1986, 252, 139-153.	1.6	88
133	Mapping human visual cortex with positron emission tomography. Nature, 1986, 323, 806-809.	27.8	413
134	Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature, 1985, 317, 58-61.	27.8	434
135	The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey. Journal of Comparative Neurology, 1984, 226, 544-564.	1.6	302
136	The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Research, 1984, 24, 429-448.	1.4	862
137	Hierarchical organization and functional streams in the visual cortex. Trends in Neurosciences, 1983, 6, 370-375.	8.6	856
138	Neuromuscular Synapse Elimination. , 1982, , 333-376.		44
139	The Nervous System of the Leech. Scientific American, 1974, 230, 38-48.	1.0	37
140	Deciphering the human-brain connectome. SPIE Newsroom, 0, , .	0.1	0