

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9783168/publications.pdf Version: 2024-02-01

VAN XII

#	Article	IF	CITATIONS
1	Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials, 2009, 30, 4930-4938.	11.4	141
2	Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment. Lab on A Chip, 2013, 13, 1048.	6.0	81
3	Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process. Analytical and Bioanalytical Chemistry, 2012, 402, 1011-1018.	3.7	80
4	Nanofluidics: A New Arena for Materials Science. Advanced Materials, 2018, 30, 1702419.	21.0	78
5	Microfluidic flow control on charged phospholipidpolymer interface. Lab on A Chip, 2007, 7, 199-206.	6.0	64
6	A Microfluidic Hydrogel Capable of Cell Preservation without Perfusion Culture under Cellâ€Based Assay Conditions. Advanced Materials, 2010, 22, 3017-3021.	21.0	51
7	Suppression of Protein Adsorption on a Charged Phospholipid Polymer Interface. Biomacromolecules, 2009, 10, 267-274.	5.4	44
8	Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices. Annals of Biomedical Engineering, 2010, 38, 1938-1953.	2.5	42
9	Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics. Analytical and Bioanalytical Chemistry, 2012, 402, 99-107.	3.7	41
10	Flexible and in situ fabrication of nanochannels with high aspect ratios and nanopillar arrays in fused silica substrates utilizing focused ion beam. RSC Advances, 2015, 5, 50638-50643.	3.6	40
11	Soft Matterâ€Regulated Active Nanovalves Locally Selfâ€Assembled in Femtoliter Nanofluidic Channels. Advanced Materials, 2016, 28, 2209-2216.	21.0	38
12	An efficient surface modification using 2-methacryloyloxyethyl phosphorylcholine to control cell attachment via photochemical reaction in a microchannel. Lab on A Chip, 2010, 10, 1937.	6.0	37
13	Site-specific nanopatterning of functional metallic and molecular arbitrary features in nanofluidic channels. Lab on A Chip, 2015, 15, 1989-1993.	6.0	28
14	The biological performance of cell-containing phospholipid polymer hydrogels in bulk and microscale form. Biomaterials, 2010, 31, 8839-8846.	11.4	26
15	An Integrated Glass Nanofluidic Device Enabling Inâ€situ Electrokinetic Probing of Water Confined in a Single Nanochannel under Pressureâ€Đriven Flow Conditions. Small, 2015, 11, 6165-6171.	10.0	25
16	Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip. ACS Applied Materials & Interfaces, 2015, 7, 23089-23097.	8.0	24
17	Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures. Lab on A Chip, 2015, 15, 3856-3861.	6.0	23
18	Waveguide-Integrated PdSe ₂ Photodetector over a Broad Infrared Wavelength Range. Nano Letters, 2022, 22, 6816-6824.	9.1	18

Yan Xu

#	Article	IF	CITATIONS
19	Nanofluidics for sub-single cellular studies: Nascent progress, critical technologies, and future perspectives. Chinese Chemical Letters, 2022, 33, 2799-2806.	9.0	16
20	Fabrication of Ultranarrow Nanochannels with Ultrasmall Nanocomponents in Glass Substrates. Micromachines, 2021, 12, 775.	2.9	13
21	Fabrication of Nanoscale Gas–Liquid Interfaces in Hydrophilic/Hydrophobic Nanopatterned Nanofluidic Channels. Nano Letters, 2021, 21, 10555-10561.	9.1	13
22	Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. Journal of Materials Chemistry B, 2022, 10, 2323-2337.	5.8	13
23	A biomimetic anti-biofouling coating in nanofluidic channels. Journal of Materials Chemistry B, 2022, 10, 2481-2489.	5.8	8
24	Cytocompatible Hydrogel Composed of Phospholipid Polymers for Regulation of Cell Functions. Advances in Polymer Science, 2011, , 141-165.	0.8	7
25	Nanofluidics: Nanofluidics: A New Arena for Materials Science (Adv. Mater. 3/2018). Advanced Materials, 2018, 30, 1870019.	21.0	6
26	Functional coatings for lab-on-a-chip systems based on phospholipid polymers. , 2021, , 555-595.		4
27	Some Frontier Technologies for Aptamers in Medical Applications. , 2021, , 375-403.		2
28	Advances in Nanofluidics. Micromachines, 2021, 12, 427.	2.9	2
29	Nano-in-Nano Integration Technology for Advanced Fabrication of Functional Nanofluidic Devices. , 2022, , 111-132.		2
30	Bridging world-to-nanofluidics interfaces through nano-in-nano integration technology. , 2016, , .		1
31	Principles and applications of the nano-in-nano integration for multidisciplinary nanofluidics. , 2022, , 407-428.		1
32	Water vapor containing plasma activation for room-temperature bonding. , 2012, , .		0
33	On-Chip Cell Preservation by Using a Phospholipid Polymer Hydrogel. Journal of the Japan Society of Colour Material, 2016, 89, 154-158.	0.1	0