Nak Hyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9783087/publications.pdf

Version: 2024-02-01

471509 713466 1,101 21 17 21 citations h-index g-index papers 22 22 22 1592 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Conâ€Ca ²⁺ â€ŧenating plant immune responses via calciumâ€permeable cation channels. New Phytologist, 2022, 234, 813-818.	7.3	39
2	A complex immune response to flagellin epitope variation in commensal communities. Cell Host and Microbe, 2021, 29, 635-649.e9.	11.0	73
3	Plant "helper―immune receptors are Ca ²⁺ -permeable nonselective cation channels. Science, 2021, 373, 420-425.	12.6	217
4	Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses. Journal of Experimental Botany, 2015, 66, 3367-3380.	4.8	26
5	The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection. Plant Science, 2015, 241, 307-315.	3.6	13
6	GLYCINEâ€RICH RNAâ€BINDING PROTEIN1 interacts with RECEPTORâ€LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (⟨i⟩Capsicum annuum⟨/i⟩). New Phytologist, 2015, 205, 786-800.	7.3	28
7	The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses. Journal of Experimental Botany, 2015, 66, 1987-1999.	4.8	23
8	Pepper Heat Shock Protein 70a Interacts with the Type III Effector AvrBsT and Triggers Plant Cell Death and Immunity Â. Plant Physiology, 2015, 167, 307-322.	4.8	61
9	The pepper phosphoenolpyruvate carboxykinase CaPEPCK1 is involved in plant immunity against bacterial and oomycete pathogens. Plant Molecular Biology, 2015, 89, 99-111.	3.9	18
10	Pepper pathogenesisâ€related protein 4c is a plasma membraneâ€localized cysteine protease inhibitor that is required for plant cell death and defense signaling. Plant Journal, 2015, 81, 81-94.	5.7	31
11	Pepper Mitochondrial <i>FORMATE DEHYDROGENASE1</i> Regulates Cell Death and Defense Responses against Bacterial Pathogens Â. Plant Physiology, 2014, 166, 1298-1311.	4.8	35
12	The pepper cysteine/histidineâ€rich DC 1 domain protein C a DC 1 binds both RNA and DNA and is required for plant cell death and defense response. New Phytologist, 2014, 201, 518-530.	7.3	25
13	Pathogenesisâ€related proteinÂ4b interacts with leucineâ€rich repeat proteinÂ1 to suppress <scp>PR</scp> 4bâ€triggered cell death and defense response in pepper. Plant Journal, 2014, 77, 521-533.	5.7	44
14	Pepper Suppressor of the G2 Allele of $\langle i \rangle$ skp1 $\langle i \rangle$ Interacts with the Receptor-Like Cytoplasmic Kinase1 and Type III Effector AvrBsT and Promotes the Hypersensitive Cell Death Response in a Phosphorylation-Dependent Manner Â. Plant Physiology, 2014, 165, 76-91.	4.8	32
15	<i>Xanthomonas</i> Filamentous Hemagglutinin-Like Protein Fha1 Interacts with Pepper Hypersensitive-Induced Reaction Protein CaHIR1 and Functions as a Virulence Factor in Host Plants. Molecular Plant-Microbe Interactions, 2013, 26, 1441-1454.	2.6	18
16	Pepper Arginine Decarboxylase Is Required for Polyamine and γ-Aminobutyric Acid Signaling in Cell Death and Defense Response Â. Plant Physiology, 2013, 162, 2067-2083.	4.8	79
17	The Pepper Extracellular Xyloglucan-Specific Endo- \hat{l}^2 -1,4-Glucanase Inhibitor Protein Gene, <i>CaXEGIP1 </i> , Is Required for Plant Cell Death and Defense Responses Â. Plant Physiology, 2012, 161, 384-396.	4.8	24
18	Overexpression of Xanthomonas campestris pv. vesicatoria effector AvrBsT in Arabidopsis triggers plant cell death, disease and defense responses. Planta, 2012, 236, 1191-1204.	3.2	11

#	Article	IF	CITATION
19	<i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> Effector AvrBsT Induces Cell Death in Pepper, but Suppresses Defense Responses in Tomato. Molecular Plant-Microbe Interactions, 2010, 23, 1069-1082.	2.6	52
20	Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta, 2008, 227, 539-558.	3.2	154
21	A Role for a Menthone Reductase in Resistance against Microbial Pathogens in Plants Â. Plant Physiology, 2008, 148, 383-401.	4.8	97