List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9782826/publications.pdf Version: 2024-02-01

FEIVLI KANC

#	Article	IF	CITATIONS
1	Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angewandte Chemie - International Edition, 2012, 51, 933-935.	13.8	1,437
2	Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production. Advanced Functional Materials, 2015, 25, 6885-6892.	14.9	898
3	Twinborn TiO ₂ –TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy and Environmental Science, 2017, 10, 1694-1703.	30.8	884
4	Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes. Advanced Materials, 2016, 28, 6932-6939.	21.0	751
5	An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy and Environmental Science, 2018, 11, 941-951.	30.8	731
6	Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy and Environmental Science, 2020, 13, 86-95.	30.8	698
7	Carbon Nanofibers Prepared via Electrospinning. Advanced Materials, 2012, 24, 2547-2566.	21.0	686
8	Dendriteâ€Free, Highâ€Rate, Longâ€Life Lithium Metal Batteries with a 3D Crossâ€Linked Network Polymer Electrolyte. Advanced Materials, 2017, 29, 1604460.	21.0	604
9	Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress in Materials Science, 2016, 76, 319-380.	32.8	579
10	Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Materials, 2018, 13, 96-102.	18.0	568
11	Macroscopic 3D Porous Graphitic Carbon Nitride Monolith for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 4634-4639.	21.0	567
12	Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Scientific Reports, 2013, 3, 2975.	3.3	541
13	Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4, 4659-4685.	10.3	493
14	Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Progress in Materials Science, 2015, 74, 51-124.	32.8	449
15	A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale, 2014, 6, 13831-13837.	5.6	434
16	Adsorption of Lead(II) Ions from Aqueous Solution on Low-Temperature Exfoliated Graphene Nanosheets. Langmuir, 2011, 27, 7558-7562.	3.5	407
17	Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy and Environmental Science, 2017, 10, 370-376.	30.8	395
18	Renewing Functionalized Graphene as Electrodes for Highâ€Performance Supercapacitors. Advanced Materials, 2012, 24, 6348-6355.	21.0	394

#	Article	IF	CITATIONS
19	Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research. Advanced Materials, 2019, 31, e1806620.	21.0	390
20	Low Resistance–Integrated Allâ€Solidâ€State Battery Achieved by Li ₇ La ₃ Zr ₂ O ₁₂ Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder. Advanced Functional Materials, 2019, 29, 1805301.	14.9	390
21	Fast Gelation of Ti ₃ C ₂ T <i>_x</i> MXene Initiated by Metal Ions. Advanced Materials, 2019, 31, e1902432.	21.0	389
22	3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 3364-3371.	6.7	387
23	Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy, 2016, 22, 278-289.	16.0	382
24	Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2, 107-138.	18.0	371
25	A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nature Communications, 2018, 9, 3870.	12.8	367
26	Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources, 2018, 389, 120-134.	7.8	359
27	Openâ€Ended, Nâ€Doped Carbon Nanotube–Graphene Hybrid Nanostructures as Highâ€Performance Catalyst Support. Advanced Functional Materials, 2011, 21, 999-1006.	14.9	358
28	A Corrosionâ€Resistant and Dendriteâ€Free Zinc Metal Anode in Aqueous Systems. Small, 2020, 16, e2001736.	10.0	354
29	Two-Dimensional Materials for Thermal Management Applications. Joule, 2018, 2, 442-463.	24.0	353
30	Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries. Nano Energy, 2017, 33, 306-312.	16.0	352
31	Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy and Environmental Science, 2016, 9, 3135-3142.	30.8	347
32	SiO ₂ Hollow Nanosphereâ€Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Advanced Energy Materials, 2016, 6, 1502214.	19.5	346
33	Compact 3D Copper with Uniform Porous Structure Derived by Electrochemical Dealloying as Dendriteâ€Free Lithium Metal Anode Current Collector. Advanced Energy Materials, 2018, 8, 1800266.	19.5	336
34	Zinc ion stabilized MnO ₂ nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 13727-13735.	10.3	333
35	Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life. Electrochimica Acta, 2017, 229, 422-428.	5.2	329
36	Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy and Environmental Science, 2012, 5, 9595.	30.8	323

#	Article	IF	CITATIONS
37	Two-Dimensional MoS ₂ Confined Co(OH) ₂ Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes. ACS Nano, 2018, 12, 4565-4573.	14.6	302
38	In Situ Synthesis of a Hierarchical Allâ€Solidâ€State Electrolyte Based on Nitrile Materials for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1500353.	19.5	300
39	A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon, 2013, 61, 190-199.	10.3	299
40	Carbon electrodes for capacitive deionization. Journal of Materials Chemistry A, 2017, 5, 470-496.	10.3	295
41	Deepâ€Eutecticâ€Solventâ€Based Selfâ€Healing Polymer Electrolyte for Safe and Longâ€Life Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 9134-9142.	13.8	292
42	Highly Flexible Graphene/Mn ₃ O ₄ Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries. ACS Nano, 2016, 10, 6227-6234.	14.6	291
43	Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nature Communications, 2019, 10, 725.	12.8	289
44	Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports, 2012, 2, 913.	3.3	284
45	A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nature Sustainability, 2022, 5, 205-213.	23.7	277
46	Flexible and planar graphene conductive additives for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 9644.	6.7	276
47	Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1703404.	19.5	274
48	Bidirectional Catalysts for Liquid–Solid Redox Conversion in Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2000315.	21.0	274
49	Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochimica Acta, 2018, 259, 170-178.	5.2	269
50	A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy and Environmental Science, 2017, 10, 941-949.	30.8	253
51	Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nature Communications, 2018, 9, 464.	12.8	250
52	Scalable fabrication of MnO ₂ nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy and Environmental Science, 2014, 7, 2652-2659.	30.8	247
53	Preparation and Characterization of MnO2/acid-treated CNT Nanocomposites for Energy Storage with Zinc Ions. Electrochimica Acta, 2014, 133, 254-261.	5.2	246
54	Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. Journal of Materials Chemistry A, 2014, 2, 13193-13206.	10.3	237

#	Article	IF	CITATIONS
55	Recent progress on manganese dioxide based supercapacitors. Journal of Materials Research, 2010, 25, 1421-1432.	2.6	236
56	Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry, 2011, 21, 18295.	6.7	230
57	Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nature Communications, 2018, 9, 402.	12.8	227
58	Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nature Communications, 2020, 11, 4188.	12.8	226
59	Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. Journal of Power Sources, 2013, 239, 269-276.	7.8	223
60	Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Materials, 2019, 20, 335-342.	18.0	221
61	Optimized Catalytic WS ₂ –WO ₃ Heterostructure Design for Accelerated Polysulfide Conversion in Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2000091.	19.5	221
62	Simultaneous Production and Functionalization of Boron Nitride Nanosheets by Sugarâ€Assisted Mechanochemical Exfoliation. Advanced Materials, 2019, 31, e1804810.	21.0	220
63	Breathable and Wearable Energy Storage Based on Highly Flexible Paper Electrodes. Advanced Materials, 2016, 28, 9313-9319.	21.0	219
64	Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nature Communications, 2019, 10, 4244.	12.8	219
65	A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon, 2015, 92, 11-14.	10.3	217
66	Co–Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an Efficient Polysulfide Mediator for Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 4731-4741.	14.6	212
67	A Metalâ€Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm ^{â^'3} . Advanced Materials, 2015, 27, 8082-8087.	21.0	211
68	In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy, 2017, 33, 45-54.	16.0	205
69	Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy, 2017, 39, 647-653.	16.0	204
70	A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications, 2007, 9, 663-666.	4.7	201
71	Ultrafine TiO ₂ Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 23105-23113.	8.0	200
72	Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors. Journal of Materials Chemistry, 2012, 22, 16943.	6.7	195

#	Article	IF	CITATIONS
73	Progress and Perspective of Solidâ€State Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707570.	14.9	194
74	Suppressing Selfâ€Discharge and Shuttle Effect of Lithium–Sulfur Batteries with V ₂ O ₅ â€Decorated Carbon Nanofiber Interlayer. Small, 2017, 13, 1602539.	10.0	190
75	Graphene sheets from worm-like exfoliated graphite. Journal of Materials Chemistry, 2009, 19, 3367.	6.7	189
76	Constructing Multifunctional Interphase between Li _{1.4} Al _{0.4} Ti _{1.6} (PO ₄) ₃ and Li Metal by Magnetron Sputtering for Highly Stable Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1901604.	19.5	189
77	An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy, 2016, 30, 900-908.	16.0	188
78	Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chemical Engineering Journal, 2020, 384, 123355.	12.7	188
79	Solid electrolyte interphase (SEI) in potassium ion batteries. Energy and Environmental Science, 2020, 13, 4583-4608.	30.8	187
80	Simultaneous Production of Highâ€Performance Flexible Textile Electrodes and Fiber Electrodes for Wearable Energy Storage. Advanced Materials, 2016, 28, 1675-1681.	21.0	186
81	Could graphene construct an effective conducting network in a high-power lithium ion battery?. Nano Energy, 2012, 1, 429-439.	16.0	185
82	Directly Drawing Self-Assembled, Porous, and Monolithic Graphene Fiber from Chemical Vapor Deposition Grown Graphene Film and Its Electrochemical Properties. Langmuir, 2011, 27, 12164-12171.	3.5	179
83	Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy, 2016, 30, 1-8.	16.0	179
84	Ultrasensitive gas detection of large-area boron-doped graphene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14527-14532.	7.1	177
85	Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale, 2015, 7, 7318-7322.	5.6	175
86	Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors. Electrochimica Acta, 2011, 56, 9240-9247.	5.2	173
87	Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber. Applied Physics Letters, 2008, 93, .	3.3	172
88	Carbon nanosheets as the electrode material in supercapacitors. Journal of Power Sources, 2009, 194, 1208-1212.	7.8	172
89	Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte. Journal of Power Sources, 2013, 224, 86-92.	7.8	171
90	An Ultralong, Highly Oriented Nickelâ€Nanowireâ€Array Electrode Scaffold for Highâ€Performance Compressible Pseudocapacitors. Advanced Materials, 2016, 28, 4105-4110.	21.0	171

#	Article	IF	CITATIONS
91	Rechargeable Aluminum-Ion Battery Based on MoS ₂ Microsphere Cathode. ACS Applied Materials & Interfaces, 2018, 10, 9451-9459.	8.0	171
92	A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy, 2016, 21, 133-144.	16.0	168
93	Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. Journal of Materials Chemistry A, 2013, 1, 5736.	10.3	166
94	Novel Insights into Energy Storage Mechanism of Aqueous Rechargeable Zn/MnO2 Batteries with Participation of Mn2+. Nano-Micro Letters, 2019, 11, 49.	27.0	166
95	Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles. Energy and Environmental Science, 2012, 5, 9895.	30.8	165
96	Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. Journal of Power Sources, 2012, 204, 236-243.	7.8	165
97	Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. Journal of Materials Chemistry A, 2014, 2, 19678-19684.	10.3	165
98	Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields. Chemical Reviews, 2021, 121, 5986-6056.	47.7	165
99	Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1439-A1444.	2.9	164
100	Functional Carbons Remedy the Shuttling of Polysulfides in Lithium–Sulfur Batteries: Confining, Trapping, Blocking, and Breaking up. Advanced Functional Materials, 2018, 28, 1800508.	14.9	164
101	Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. Journal of Materials Chemistry A, 2013, 1, 12432.	10.3	163
102	Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Materials, 2016, 3, 18-23.	18.0	163
103	All-solid-state flexible planar lithium ion micro-capacitors. Energy and Environmental Science, 2018, 11, 2001-2009.	30.8	160
104	Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N ₄ Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2019, 29, 1906174.	14.9	159
105	Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Materials Today, 2021, 42, 73-98.	14.2	159
106	A review of gassing behavior in Li ₄ Ti ₅ O ₁₂ -based lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 6368-6381.	10.3	157
107	Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy, 2015, 15, 43-53.	16.0	156
108	Biomass Organs Control the Porosity of Their Pyrolyzed Carbon. Advanced Functional Materials, 2017, 27, 1604687.	14.9	154

#	Article	IF	CITATIONS
109	Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. Journal of Physics and Chemistry of Solids, 2012, 73, 1487-1491.	4.0	153
110	A Highly Flexible and Lightweight MnO ₂ /Graphene Membrane for Superior Zincâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2007397.	14.9	153
111	Porphyrin-Based Nanostructures for Photocatalytic Applications. Nanomaterials, 2016, 6, 51.	4.1	150
112	Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon, 2018, 127, 424-431.	10.3	150
113	Ethers Illume Sodiumâ€Based Battery Chemistry: Uniqueness, Surprise, and Challenges. Advanced Energy Materials, 2018, 8, 1801361.	19.5	149
114	NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 17057-17066.	10.3	149
115	The high performances of SiO 2 /Al 2 O 3 -coated electrospun polyimide fibrous separator for lithium-ion battery. Journal of Membrane Science, 2015, 493, 1-7.	8.2	148
116	Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chemical Communications, 2017, 53, 6872-6874.	4.1	147
117	Redoxâ€Active Organic Sodium Anthraquinoneâ€2â€Sulfonate (AQS) Anchored on Reduced Graphene Oxide for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1802088.	19.5	147
118	Glucose-Promoted Zn-Based Metal–Organic Framework/Graphene Oxide Composites for Hydrogen Sulfide Removal. ACS Applied Materials & Interfaces, 2012, 4, 4942-4947.	8.0	144
119	Raman Evidence for Late Stage Disproportionation in a Li–O ₂ Battery. Journal of Physical Chemistry Letters, 2014, 5, 2705-2710.	4.6	144
120	A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform. Journal of Power Sources, 2015, 282, 174-178.	7.8	144
121	Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon, 2015, 84, 434-443.	10.3	144
122	Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries. Electrochimica Acta, 2019, 320, 134565.	5.2	143
123	Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. Journal of Power Sources, 2012, 202, 253-261.	7.8	142
124	Combining Fast Li-Ion Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li ₄ Ti ₅ O ₁₂ Spheres of Densely Packed Nanocrystallites. Chemistry of Materials, 2015, 27, 5647-5656.	6.7	142
125	An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. Nano Energy, 2017, 39, 291-296.	16.0	142
126	Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. Journal of Power Sources, 2012, 198, 428-431.	7.8	141

#	Article	IF	CITATIONS
127	An interwoven MoO ₃ @CNT scaffold interlayer for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 8612-8619.	10.3	141
128	High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials. Nano-Micro Letters, 2020, 12, 152.	27.0	141
129	Unveiling the influence of electrode/electrolyte interface on the capacity fading for typical graphite-based potassium-ion batteries. Energy Storage Materials, 2020, 24, 319-328.	18.0	140
130	A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials. Journal of Power Sources, 2011, 196, 10465-10471.	7.8	139
131	Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property. Scientific Reports, 2013, 3, 2598.	3.3	139
132	Quasi-Solid-State Dual-Ion Sodium Metal Batteries for Low-Cost Energy Storage. CheM, 2020, 6, 902-918.	11.7	137
133	Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment. Energy and Environmental Science, 2014, 7, 3674-3682.	30.8	136
134	Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energy, 2016, 26, 276-285.	16.0	135
135	Correlation Between Atomic Structure and Electrochemical Performance of Anodes Made from Electrospun Carbon Nanofiber Films. Advanced Energy Materials, 2014, 4, 1301448.	19.5	133
136	Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries. Journal of Power Sources, 2019, 438, 226951.	7.8	133
137	Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization. Carbon, 2011, 49, 725-729.	10.3	131
138	Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon, 2015, 87, 347-356.	10.3	131
139	A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Materials Horizons, 2018, 5, 275-284.	12.2	129
140	Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. Journal of Power Sources, 2008, 180, 664-670.	7.8	128
141	Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. Journal of Materials Chemistry A, 2013, 1, 11942.	10.3	128
142	One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium–sulfur batteries. Journal of Power Sources, 2015, 295, 182-189.	7.8	128
143	A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon, 2016, 98, 582-591.	10.3	128
144	Hierarchical MoS ₂ /Carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 5668-5677.	10.3	128

#	Article	IF	CITATIONS
145	Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics. ACS Nano, 2015, 9, 5636-5645.	14.6	127
146	Nonâ€Flammable Liquid and Quasiâ€Solid Electrolytes toward Highlyâ€Safe Alkali Metalâ€Based Batteries. Advanced Functional Materials, 2021, 31, 2008644.	14.9	127
147	Inâ€Situ Construction of an Ultraâ€Stable Conductive Composite Interface for Highâ€Voltage Allâ€Solidâ€State Lithium Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 11784-11788.	2 13.8	126
148	Secondary batteries with multivalent ions for energy storage. Scientific Reports, 2015, 5, 14120.	3.3	125
149	A high-energy-density micro supercapacitor of asymmetric MnO2–carbon configuration by using micro-fabrication technologies. Journal of Power Sources, 2013, 234, 302-309.	7.8	124
150	Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon, 2018, 127, 459-468.	10.3	123
151	Suppressing Defectsâ€Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering. Advanced Materials, 2020, 32, e2003965.	21.0	123
152	Graphite blocks with preferred orientation and high thermal conductivity. Carbon, 2012, 50, 175-182.	10.3	122
153	Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. Journal of Materials Chemistry C, 2016, 4, 2047-2055.	5.5	122
154	Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy, 2017, 34, 242-248.	16.0	122
155	Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution. Carbon, 2002, 40, 911-916.	10.3	121
156	N and S co-doped porous carbon spheres prepared using <scp>l</scp> -cysteine as a dual functional agent for high-performance lithium–sulfur batteries. Chemical Communications, 2015, 51, 17720-17723.	4.1	121
157	Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes. Nano Energy, 2017, 40, 224-232.	16.0	121
158	Selfâ€Healing Materials for Energyâ€Storage Devices. Advanced Functional Materials, 2020, 30, 1909912.	14.9	121
159	Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries. Electrochimica Acta, 2015, 168, 271-276.	5.2	120
160	Sulfur confined in nitrogen-doped microporous carbon used in a carbonate-based electrolyte for long-life, safe lithium-sulfur batteries. Carbon, 2016, 109, 1-6.	10.3	119
161	Capillary Encapsulation of Metallic Potassium in Aligned Carbon Nanotubes for Use as Stable Potassium Metal Anodes. Advanced Energy Materials, 2019, 9, 1901427.	19.5	118
162	Fe ₃ O ₄ -Decorated Porous Graphene Interlayer for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26264-26273.	8.0	117

#	Article	IF	CITATIONS
163	The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery. Carbon, 2013, 57, 530-533.	10.3	115
164	Cellulose Nanofiber as a Distinct Structure-Directing Agent for Xylem-like Microhoneycomb Monoliths by Unidirectional Freeze-Drying. ACS Nano, 2016, 10, 10689-10697.	14.6	115
165	Recent innovative configurations in high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 5222-5234.	10.3	115
166	Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry. Nano-Micro Letters, 2021, 13, 95.	27.0	115
167	A Lightweight 3D Cu Nanowire Network with Phosphidation Gradient as Current Collector for Highâ€Đensity Nucleation and Stable Deposition of Lithium. Advanced Materials, 2019, 31, e1904991.	21.0	114
168	Co–B Nanoflakes as Multifunctional Bridges in ZnCo ₂ O ₄ Microâ€/Nanospheres for Superior Lithium Storage with Boosted Kinetics and Stability. Advanced Energy Materials, 2019, 9, 1803612.	19.5	114
169	β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery. Journal of Energy Chemistry, 2021, 56, 365-373.	12.9	114
170	Spherical Li Deposited inside 3D Cu Skeleton as Anode with Ultrastable Performance. ACS Applied Materials & Interfaces, 2018, 10, 20244-20249.	8.0	113
171	Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1903229.	14.9	112
172	Three-dimensional porous graphene sponges assembled with the combination of surfactant and freeze-drying. Nano Research, 2014, 7, 1477-1487.	10.4	111
173	Unveiling the Axial Hydroxyl Ligand on FeN ₄ C Electrocatalysts and Its Impact on the pHâ€Đependent Oxygen Reduction Activities and Poisoning Kinetics. Advanced Science, 2020, 7, 2000176.	11.2	111
174	Facile synthesis of hierarchical conducting polypyrrole nanostructures via a reactive template of MnO ₂ and their application in supercapacitors. RSC Advances, 2014, 4, 199-202.	3.6	110
175	Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Research, 2018, 11, 892-904.	10.4	110
176	Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal–organic framework/reduced graphene oxide self-assembled papers. Journal of Materials Chemistry A, 2018, 6, 20254-20266.	10.3	110
177	Asymmetric Activated Carbon-Manganese Dioxide Capacitors in Mild Aqueous Electrolytes Containing Alkaline-Earth Cations. Journal of the Electrochemical Society, 2009, 156, A435.	2.9	109
178	An efficient flexible electrochemical glucose sensor based on carbon nanotubes/carbonized silk fabrics decorated with Pt microspheres. Sensors and Actuators B: Chemical, 2018, 256, 63-70.	7.8	109
179	Ultra-small self-discharge and stable lithium-sulfur batteries achieved by synergetic effects of multicomponent sandwich-type composite interlayer. Nano Energy, 2018, 50, 367-375.	16.0	109
180	High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage. Nano-Micro Letters, 2019, 11, 94.	27.0	108

#	Article	IF	CITATIONS
181	Highly Efficient Lead-Free (Bi,Ce)-Codoped Cs ₂ Ag _{0.4} Na _{0.6} InCl ₆ Double Perovskites for White Light-Emitting Diodes. Chemistry of Materials, 2020, 32, 7814-7821.	6.7	108
182	Advanced Matrixes for Binderâ€Free Nanostructured Electrodes in Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1908445.	21.0	108
183	Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 18400-18405.	10.3	107
184	Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy, 2019, 60, 305-311.	16.0	106
185	Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. Energy Storage Materials, 2021, 35, 731-738.	18.0	106
186	Carbon enables the practical use of lithium metal in a battery. Carbon, 2017, 123, 744-755.	10.3	105
187	Nitrogen-Enriched Porous Carbon Coating for Manganese Oxide Nanostructures toward High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 9185-9194.	8.0	104
188	Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1-9.	3.5	102
189	Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode. Energy Storage Materials, 2019, 18, 320-327.	18.0	102
190	Green Synthesis of Hierarchically Porous Carbon Nanotubes as Advanced Materials for Highâ€Efficient Energy Storage. Small, 2018, 14, e1703950.	10.0	100
191	Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells. Carbon, 2007, 45, 429-435.	10.3	99
192	Reversible Insertion Properties of Zinc Ion into Manganese Dioxide and Its Application for Energy Storage. Electrochemical and Solid-State Letters, 2009, 12, A61.	2.2	99
193	A film of porous carbon nanofibers that contain Sn/SnO nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries. Carbon, 2011, 49, 89-95.	10.3	99
194	Relation between the Charge Efficiency of Activated Carbon Fiber and Its Desalination Performance. Langmuir, 2012, 28, 5079-5084.	3.5	99
195	Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 7112-7120.	10.3	99
196	Revisiting the Roles of Natural Graphite in Ongoing Lithiumâ€ion Batteries. Advanced Materials, 2022, 34, e2106704.	21.0	99
197	Effect of preparation conditions on the characteristics of exfoliated graphite. Carbon, 2002, 40, 1575-1581.	10.3	98
198	Dense Graphene Monolith for High Volumetric Energy Density Li–S Batteries. Advanced Energy Materials, 2018, 8, 1703438.	19.5	97

#	Article	IF	CITATIONS
199	Nanostructured Anode Materials for Nonâ€aqueous Lithium Ion Hybrid Capacitors. Energy and Environmental Materials, 2018, 1, 75-87.	12.8	97
200	Surface-Functionalized Coating for Lithium-Rich Cathode Material To Achieve Ultra-High Rate and Excellent Cycle Performance. ACS Nano, 2019, 13, 11891-11900.	14.6	97
201	Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 52, 277-283.	12.9	97
202	DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor. Electrochimica Acta, 2012, 73, 129-135.	5.2	96
203	A three-dimensional graphene skeleton as a fast electron and ion transport network for electrochemical applications. Journal of Materials Chemistry A, 2014, 2, 3031.	10.3	96
204	MnO2/polypyrrole nanotubular composites: reactive template synthesis, characterization and application as superior electrode materials for high-performance supercapacitors. Electrochimica Acta, 2014, 130, 642-649.	5.2	96
205	Dimensionality, Function and Performance of Carbon Materials in Energy Storage Devices. Advanced Energy Materials, 2022, 12, 2100775.	19.5	96
206	Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites. Journal of Alloys and Compounds, 2011, 509, 494-498.	5.5	95
207	Lamellar MXene Composite Aerogels with Sandwiched Carbon Nanotubes Enable Stable Lithium–Sulfur Batteries with a High Sulfur Loading. Advanced Functional Materials, 2021, 31, 2100793.	14.9	95
208	Synthesis and electrochemical performance of MnO2/CNTs–embedded carbon nanofibers nanocomposites for supercapacitors. Electrochimica Acta, 2012, 75, 213-219.	5.2	94
209	Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst. Nano Energy, 2014, 4, 88-96.	16.0	94
210	Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance. Nanoscale, 2015, 7, 18459-18463.	5.6	94
211	In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy, 2020, 78, 105282.	16.0	93
212	Flexible supercapacitors. Particuology, 2013, 11, 371-377.	3.6	92
213	Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery. Journal of Materials Chemistry A, 2014, 2, 20059-20066.	10.3	92
214	Interfacial Effects on Lithium Superoxide Disproportionation in Li-O ₂ Batteries. Nano Letters, 2015, 15, 1041-1046.	9.1	92
215	A high-density graphene–sulfur assembly: a promising cathode for compact Li–S batteries. Nanoscale, 2015, 7, 5592-5597	5.6	92
216	Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer, 2017, 115, 52-59.	3.8	92

#	Article	IF	CITATIONS
217	Indefinite permittivity and negative refraction in natural material: Graphite. Applied Physics Letters, 2011, 98, .	3.3	91
218	Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of <i>ex situ</i> anodic pretreatment and an in-built gel polymer electrolyte. Journal of Materials Chemistry A, 2020, 8, 7197-7204.	10.3	91
219	Preparation of microporous carbon nanofibers from polyimide by using polyvinyl pyrrolidone as template and their capacitive performance. Journal of Power Sources, 2015, 278, 683-692.	7.8	90
220	"Allâ€inâ€One―Nanoparticles for Trimodality Imagingâ€Guided Intracellular Photoâ€magnetic Hyperthermia Therapy under Intravenous Administration. Advanced Functional Materials, 2018, 28, 1705710.	14.9	90
221	Oxidation State Modulation of Bismuth for Efficient Electrocatalytic Nitrogen Reduction to Ammonia. Advanced Functional Materials, 2021, 31, 2100300.	14.9	90
222	Three-dimensional reduced graphene oxide powder for efficient microwave absorption in the S-band (2–4 GHz). RSC Advances, 2017, 7, 25773-25779.	3.6	89
223	A Simple Method for the Complete Performance Recovery of Degraded Ni-rich LiNi _{0.70} Co _{0.15} Mn _{0.15} O ₂ Cathode via Surface Reconstruction. ACS Applied Materials & Interfaces, 2019, 11, 14076-14084.	8.0	89
224	Charge storage mechanism of manganese dioxide for capacitor application: Effect of the mild electrolytes containing alkaline and alkaline-earth metal cations. Journal of Power Sources, 2011, 196, 7854-7859.	7.8	88
225	Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets. Carbon, 2014, 69, 169-177.	10.3	88
226	Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon, 2018, 140, 296-305.	10.3	88
227	A conductive-dielectric gradient framework for stable lithium metal anode. Energy Storage Materials, 2020, 24, 700-706.	18.0	88
228	How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries. Carbon, 2016, 103, 356-362.	10.3	87
229	Theoretical Investigation of the Intercalation Chemistry of Lithium/Sodium Ions in Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2017, 121, 13599-13605.	3.1	87
230	Building Ohmic Contact Interfaces toward Ultrastable Zn Metal Anodes. Advanced Science, 2021, 8, e2102612.	11.2	87
231	Capacitive Behavior and Charge Storage Mechanism of Manganese Dioxide in Aqueous Solution Containing Bivalent Cations. Journal of the Electrochemical Society, 2009, 156, A73.	2.9	86
232	Synthesis of activated carbon nanospheres with hierarchical porous structure for high volumetric performance supercapacitors. Electrochimica Acta, 2015, 182, 908-916.	5.2	86
233	A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. Journal of Materials Chemistry A, 2017, 5, 18888-18895.	10.3	85
234	Single-Crystalline Permalloy Nanowires in Carbon Nanotubes:  Enhanced Encapsulation and Magnetization. Journal of Physical Chemistry C, 2007, 111, 11475-11479.	3.1	84

#	Article	IF	CITATIONS
235	Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity. Nanoscale, 2014, 6, 978-985.	5.6	84
236	Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. Nano Energy, 2015, 15, 83-91.	16.0	84
237	Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries. Journal of Power Sources, 2010, 195, 1216-1220.	7.8	83
238	Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions. Energy Storage Materials, 2015, 1, 112-118.	18.0	83
239	A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 20218-20224.	10.3	83
240	Adsorption of trace polar methy-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers. Carbon, 2002, 40, 1363-1367.	10.3	82
241	Breakthrough of methyethylketone and benzene vapors in activated carbon fiber beds. Journal of Hazardous Materials, 2003, 98, 107-115.	12.4	82
242	Electrospun ultrafine carbon fiber webs for electrochemical capacitive desalination. New Journal of Chemistry, 2010, 34, 1843.	2.8	82
243	Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability. Journal of Materials Chemistry A, 2017, 5, 19934-19942.	10.3	82
244	Ultrasensitive Pressure Detection of Few‣ayer MoS ₂ . Advanced Materials, 2017, 29, 1603266.	21.0	82
245	Supercapacitive studies on amorphous MnO2 in mild solutions. Journal of Power Sources, 2008, 184, 691-694.	7.8	81
246	High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. Journal of Materials Chemistry A, 2015, 3, 4729-4737.	10.3	81
247	Surface Heterostructure Induced by PrPO ₄ Modification in Li _{1.2} [Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ Cathode Material for High-Performance Lithium-Ion Batteries with Mitigating Voltage Decay. ACS Applied Materials & Amp: Interfaces 2017, 9, 27936-27945	8.0	81
248	Artificial Solidâ€Electrolyte Interphase Enabled Highâ€Capacity and Stable Cycling Potassium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902697.	19.5	81
249	Abuse tolerance behavior of layered oxide-based Li-ion battery during overcharge and over-discharge. RSC Advances, 2016, 6, 76897-76904.	3.6	80
250	Advances in Understanding Materials for Rechargeable Lithium Batteries by Atomic Force Microscopy. Energy and Environmental Materials, 2018, 1, 28-40.	12.8	80
251	Ordered mesoporous carbon nanospheres as electrode materials for high-performance supercapacitors. Electrochemistry Communications, 2013, 36, 66-70.	4.7	79
252	Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor. Scientific Reports, 2013, 3, 2477.	3.3	79

#	Article	IF	CITATIONS
253	In situ polyaniline modified cathode material Li[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ with high rate capacity for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 18613-18623.	10.3	79
254	"Concrete―inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery. Carbon, 2015, 93, 59-67.	10.3	78
255	Buckybowls: Corannulene and Its Derivatives. Small, 2016, 12, 3206-3223.	10.0	78
256	Li-ion and Na-ion transportation and storage properties in various sized TiO ₂ spheres with hierarchical pores and high tap density. Journal of Materials Chemistry A, 2017, 5, 4359-4367.	10.3	78
257	Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 1828-1833.	5.1	78
258	High-Performance Quasi-Solid-State MXene-Based Li–I Batteries. ACS Central Science, 2019, 5, 365-373.	11.3	78
259	Effect of using chlorine-containing precursors in the synthesis of FeNi-filled carbon nanotubes. Carbon, 2007, 45, 1433-1438.	10.3	77
260	Hierarchical nickel nanowire@NiCo ₂ S ₄ nanowhisker composite arrays with a test-tube-brush-like structure for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15284-15293.	10.3	77
261	Constructing Effective Interfaces for Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Pellets To Achieve Room-Temperature Hybrid Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019. 11. 9911-9918.	8.0	77
262	Enhanced performance of interconnected LiFePO4/C microspheres with excellent multiple conductive network and subtle mesoporous structure. Electrochimica Acta, 2015, 152, 398-407.	5.2	75
263	The Interplay of Oxygen Functional Groups and Folded Texture in Densified Graphene Electrodes for Compact Sodiumâ€Ion Capacitors. Advanced Energy Materials, 2018, 8, 1702395.	19.5	75
264	In-Plane Highly Dispersed Cu ₂ O Nanoparticles for Seeded Lithium Deposition. Nano Letters, 2019, 19, 4601-4607.	9.1	75
265	Investigation on Zinc Ion Storage in Alpha Manganese Dioxide for Zinc Ion Battery by Electrochemical Impedance Spectrum. Journal of the Electrochemical Society, 2013, 160, A93-A97.	2.9	74
266	Activated carbon fibers loaded with MnO2 for removing NO at room temperature. Chemical Engineering Journal, 2014, 256, 101-106.	12.7	74
267	Twin-functional graphene oxide: compacting with Fe 2 O 3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Materials, 2017, 6, 98-103.	18.0	74
268	Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization. Chemical Engineering Journal, 2014, 252, 30-37.	12.7	73
269	Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits. Nature Communications, 2015, 6, 8150.	12.8	73
270	Nobleâ€Metalâ€Free Hybrid Membranes for Highly Efficient Hydrogen Evolution. Advanced Materials, 2017, 29, 1603617.	21.0	73

#	Article	IF	CITATIONS
271	A Novel Graphite–Graphite Dual Ion Battery Using an AlCl ₃ –[EMIm]Cl Liquid Electrolyte. Small, 2018, 14, e1800745.	10.0	73
272	In-situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode. Electrochimica Acta, 2015, 157, 134-141.	5.2	72
273	Dendrite-Free Potassium–Oxygen Battery Based on a Liquid Alloy Anode. ACS Applied Materials & Interfaces, 2017, 9, 31871-31878.	8.0	72
274	Realizing stable lithium deposition by <i>in situ</i> grown Cu ₂ S nanowires inside commercial Cu foam for lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 727-732.	10.3	72
275	Highly porous carbon nanofibers from electrospun polyimide/SiO2 hybrids as an improved anode for lithium-ion batteries. Electrochemistry Communications, 2013, 34, 52-55.	4.7	71
276	Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery. Nano Energy, 2016, 30, 138-145.	16.0	71
277	Influence of over-discharge on the lifetime and performance of LiFePO ₄ /graphite batteries. RSC Advances, 2016, 6, 30474-30483.	3.6	71
278	A sliced orange-shaped ZnCo 2 O 4 material as anode for high-performance lithium ion battery. Energy Storage Materials, 2017, 6, 61-69.	18.0	71
279	Universal Descriptor for Large-Scale Screening of High-Performance MXene-Based Materials for Energy Storage and Conversion. Chemistry of Materials, 2018, 30, 2687-2693.	6.7	71
280	High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: surpassing the performance of lithium-ion capacitors in a uniform system. NPG Asia Materials, 2018, 10, 775-787.	7.9	71
281	Proton selective adsorption on Pt–Ni nano-thorn array electrodes for superior hydrogen evolution activity. Energy and Environmental Science, 2021, 14, 1594-1601.	30.8	71
282	An ultrathin and continuous Li4Ti5O12 coated carbon nanofiber interlayer for high rate lithium sulfur battery. Journal of Energy Chemistry, 2019, 31, 19-26.	12.9	70
283	Density functional theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials. Progress in Natural Science: Materials International, 2019, 29, 247-255.	4.4	70
284	State-of-health (SOH) evaluation on lithium-ion battery by simulating the voltage relaxation curves. Electrochimica Acta, 2019, 303, 183-191.	5.2	70
285	Rechargeable anion-shuttle batteries for low-cost energy storage. CheM, 2021, 7, 1993-2021.	11.7	70
286	Sorption capacity of exfoliated graphite for oils-sorption in and among worm-like particles. Carbon, 2004, 42, 2603-2607.	10.3	69
287	Synthesis of mesoporous carbon nanosheets using tubular halloysite and furfuryl alcohol by a template-like method. Microporous and Mesoporous Materials, 2008, 108, 318-324.	4.4	69
288	In situ synthesis and magnetic anisotropy of ferromagnetic buckypaper. Carbon, 2009, 47, 1141-1145.	10.3	69

#	Article	IF	CITATIONS
289	Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes. Nano Energy, 2019, 61, 47-53.	16.0	69
290	SnSe nano-particles as advanced positive electrode materials for rechargeable aluminum-ion batteries. Chemical Engineering Journal, 2021, 403, 126377.	12.7	69
291	Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews, 2021, 4, 601-631.	25.5	69
292	Strong and reversible modulation of carbon nanotube–silicon heterojunction solar cells by an interfacial oxide layer. Physical Chemistry Chemical Physics, 2012, 14, 8391.	2.8	68
293	A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chemical Communications, 2012, 48, 5904.	4.1	68
294	Graphene oxide-embedded porous carbon nanofiber webs by electrospinning for capacitive deionization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 153-158.	4.7	68
295	Minimizing Voltage Loss in Efficient All-Inorganic CsPbI ₂ Br Perovskite Solar Cells through Energy Level Alignment. ACS Energy Letters, 2019, 4, 2491-2499.	17.4	68
296	Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 15871-15879.	10.3	68
297	Progress and perspective of Li _{1 +} <scp>_xAl_xTi₂</scp> _{â€x} (<scp>F ceramic electrolyte in lithium batteries. InformaÄnÃ-Materiály, 2021, 3, 1195-1217.</scp>	PO <ustub⊳4< td=""><td>เชl8></td></ustub⊳4<>	เชl8>
298	Influences of H2O2 on synthesis of H2SO4-GICs. Journal of Physics and Chemistry of Solids, 1996, 57, 889-892.	4.0	67
299	Structure and Electrochemical Properties of Zn-Doped Li[sub 4]Ti[sub 5]O[sub 12] as Anode Materials in Li-lon Battery. Electrochemical and Solid-State Letters, 2010, 13, A36.	2.2	67
300	Tailoring Microstructure of Grapheneâ€Based Membrane by Controlled Removal of Trapped Water Inspired by the Phase Diagram. Advanced Functional Materials, 2014, 24, 3456-3463.	14.9	67
301	Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts. Scientific Reports, 2014, 4, 6289.	3.3	67
302	Highâ€Density Microporous Li ₄ Ti ₅ O ₁₂ Microbars with Superior Rate Performance for Lithiumâ€Ion Batteries. Advanced Science, 2017, 4, 1600311.	11.2	66
303	Deterioration mechanism of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ /graphite–SiO _x power batteries under high temperature and discharge cycling conditions. Journal of Materials Chemistry A 2018 6 65-72	10.3	66
304	Influences of Mesopore Size on Oxygen Reduction Reaction Catalysis of Pt/Carbon Aerogels. Journal of Physical Chemistry C, 2007, 111, 2040-2043.	3.1	65
305	Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite. Carbon, 2012, 50, 5052-5061.	10.3	65
306	Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon nanofibers with improved capacitive performance. Carbon, 2015, 94, 342-348.	10.3	65

#	ARTICLE	IF	CITATIONS
307	Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO ₂ Composite Textiles. ACS Applied Materials & Interfaces, 2018, 10, 10851-10859.	8.0	65
308	Deactivating Defects in Graphenes with Al ₂ O ₃ Nanoclusters to Produce Longâ€Life and Highâ€Rate Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803078.	19.5	65
309	High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes. Journal of Energy Chemistry, 2021, 60, 233-240.	12.9	65
310	The Effect of Vanadium on Physicochemical and Electrochemical Performances of LiFePO[sub 4] Cathode for Lithium Battery. Journal of the Electrochemical Society, 2011, 158, A26.	2.9	64
311	Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface. Chemical Communications, 2012, 48, 3706-3708.	4.1	64
312	Cyclized-polyacrylonitrile modified carbon nanofiber interlayers enabling strong trapping of polysulfides in lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 12973-12980.	10.3	64
313	Facile synthesis of free-standing nickel chalcogenide electrodes for overall water splitting. Journal of Energy Chemistry, 2017, 26, 1217-1222.	12.9	64
314	Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing. Ceramics International, 2020, 46, 20810-20818.	4.8	64
315	Preparation of activated carbon microspheres from phenolic-resin by supercritical water activation. Carbon, 2004, 42, 775-783.	10.3	63
316	Mildly expanded graphite for anode materials of lithium ion battery synthesized with perchloric acid. Electrochimica Acta, 2014, 116, 170-174.	5.2	63
317	Dual-functional hard template directed one-step formation of a hierarchical porous carbon–carbon nanotube hybrid for lithium–sulfur batteries. Chemical Communications, 2016, 52, 12143-12146.	4.1	63
318	Controlled synthesis of anisotropic hollow ZnCo2O4 octahedrons for high-performance lithium storage. Energy Storage Materials, 2018, 11, 184-190.	18.0	63
319	Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs. Small, 2020, 16, e2000699.	10.0	63
320	Mildly-expanded graphite with adjustable interlayer distance as high-performance anode for potassium-ion batteries. Carbon, 2021, 172, 200-206.	10.3	63
321	Largeâ€Area Flexible Core–Shell Graphene/Porous Carbon Woven Fabric Films for Fiber Supercapacitor Electrodes. Advanced Functional Materials, 2013, 23, 4862-4869.	14.9	62
322	Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2015, 739, 84-88.	3.8	62
323	Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with three-electrode LiCoO2/Graphite pouch cell. Electrochimica Acta, 2018, 269, 378-387.	5.2	62
324	Precise carbon structure control by salt template for high performance sodium-ion storage. Journal of Energy Chemistry, 2019, 31, 101-106.	12.9	62

#	Article	IF	CITATIONS
325	Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3O2 cathode for rechargeable lithium batteries. Carbon, 2006, 44, 1334-1336.	10.3	61
326	Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices. Scientific Reports, 2013, 3, 2294.	3.3	61
327	<i>In situ</i> growth of metal–organic framework-derived CoTe ₂ nanoparticles@nitrogen-doped porous carbon polyhedral composites as novel cathodes for rechargeable aluminum-ion batteries. Journal of Materials Chemistry A, 2020, 8, 5535-5545.	10.3	61
328	Investigations on the modified natural graphite as anode materials in lithium ion battery. Journal of Physics and Chemistry of Solids, 2008, 69, 1265-1271.	4.0	60
329	Modified natural flake graphite with high cycle performance as anode material in lithium ion batteries. Electrochimica Acta, 2009, 54, 3930-3934.	5.2	60
330	Monodispersed SnO 2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries. Energy Storage Materials, 2016, 3, 98-105.	18.0	60
331	Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Science China Materials, 2017, 60, 109-118.	6.3	60
332	Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte. Journal of Materials Chemistry A, 2018, 6, 1582-1589.	10.3	60
333	NO removal by electrospun porous carbon nanofibers at room temperature. Chemical Engineering Journal, 2011, 170, 505-511.	12.7	59
334	Deterioration of lithium iron phosphate/graphite power batteries under high-rate discharge cycling. Electrochimica Acta, 2015, 176, 270-279.	5.2	59
335	A novel surface-heterostructured Li1.2Mn0.54Ni0.13Co0.13O2@Ce0.8Sn0.2O2â^'σ cathode material for Li-ion batteries with improved initial irreversible capacity loss. Journal of Materials Chemistry A, 2018, 6, 13883-13893.	10.3	59
336	Ni@Li2O co-axial nanowire based reticular anode: Tuning electric field distribution for homogeneous lithium deposition. Energy Storage Materials, 2019, 18, 155-164.	18.0	59
337	Progress and perspective of the cathode/electrolyte interface construction in allâ€solidâ€state lithium batteries. , 2021, 3, 866-894.		59
338	Transition metal assisted synthesis of tunable pore structure carbon with high performance as sodium/lithium ion battery anode. Carbon, 2018, 129, 667-673.	10.3	58
339	An air-stable and waterproof lithium metal anode enabled by wax composite packaging. Science Bulletin, 2019, 64, 910-917.	9.0	58
340	Pore Structure and Fractal Characteristics of Activated Carbon Fibers Characterized by Using HRTEM. Journal of Colloid and Interface Science, 2002, 249, 453-457.	9.4	57
341	A novel mesoporous carbon with straight tunnel-like pore structure for high rate electrochemical capacitors. Journal of Power Sources, 2012, 204, 230-235.	7.8	57
342	MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries. Electrochimica Acta, 2015, 170, 164-170.	5.2	57

#	Article	IF	CITATIONS
343	Ultrafast-Charging and Long-Life Li-Ion Battery Anodes of TiO ₂ -B and Anatase Dual-Phase Nanowires. ACS Applied Materials & Interfaces, 2017, 9, 35917-35926.	8.0	57
344	Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Communications Chemistry, 2019, 2, .	4.5	57
345	Synthesis of nitrogen-doped carbon thin films and their applications in solar cells. Carbon, 2011, 49, 5022-5028.	10.3	56
346	High capacity 0.5Li2MnO3·0.5LiNi0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method. Electrochimica Acta, 2013, 87, 686-692.	5.2	56
347	Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon, 2013, 57, 452-459.	10.3	56
348	Graphene Emerges as a Versatile Template for Materials Preparation. Small, 2016, 12, 2674-2688.	10.0	56
349	Holey nickel nanotube reticular network scaffold for high-performance flexible rechargeable Zn/MnO2 batteries. Chemical Engineering Journal, 2019, 370, 330-336.	12.7	56
350	Nitrate Additives Coordinated with Crown Ether Stabilize Lithium Metal Anodes in Carbonate Electrolyte. Advanced Functional Materials, 2021, 31, 2102128.	14.9	56
351	Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition. Journal of Energy Chemistry, 2021, 60, 194-201.	12.9	56
352	Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications. International Journal of Hydrogen Energy, 2012, 37, 860-866.	7.1	55
353	Preparation of ZnO/SiO2 gel composites and their performance of H2S removal at room temperature. Journal of Hazardous Materials, 2012, 215-216, 166-172.	12.4	55
354	Highly Crystalline Lithium Titanium Oxide Sheets Coated with Nitrogenâ€Doped Carbon enable Highâ€Rate Lithiumâ€lon Batteries. ChemSusChem, 2014, 7, 2567-2574.	6.8	55
355	Polyimideâ€based porous hollow carbon nanofibers for supercapacitor electrode. Journal of Applied Polymer Science, 2016, 133, .	2.6	55
356	A Composite Polymeric Carbon Nitride with In Situ Formed Isotype Heterojunctions for Highly Improved Photocatalysis under Visible Light. Small, 2017, 13, 1603182.	10.0	55
357	Engineering Graphenes from the Nano- to the Macroscale for Electrochemical Energy Storage. Electrochemical Energy Reviews, 2018, 1, 139-168.	25.5	55
358	A Protective Layer for Lithium Metal Anode: Why and How. Small Methods, 2021, 5, e2001035.	8.6	55
359	Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. National Science Review, 2022, 9, .	9.5	55
360	Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors. Nanoscale, 2015, 7, 9133-9139.	5.6	54

#	Article	IF	CITATIONS
361	LiNi0.8Co0.15Al0.05O2 as both a trapper and accelerator of polysulfides for lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 111-117.	18.0	54
362	Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. Carbon, 2019, 141, 16-24.	10.3	54
363	High performance, environmentally benign and integratable Zn//MnO ₂ microbatteries. Journal of Materials Chemistry A, 2018, 6, 3933-3940.	10.3	53
364	A unique carbon with a high specific surface area produced by the carbonization of agar in the presence of graphene. Chemical Communications, 2013, 49, 10427-10429.	4.1	52
365	Silicon/carbon composite microspheres with hierarchical core–shell structure as anode for lithium ion batteries. Electrochemistry Communications, 2014, 49, 98-102.	4.7	52
366	Sandwiching h-BN Monolayer Films between Sulfonated Poly(ether ether ketone) and Nafion for Proton Exchange Membranes with Improved Ion Selectivity. ACS Nano, 2019, 13, 2094-2102.	14.6	52
367	A Simple Dual-Ion Doping Method for Stabilizing Li-Rich Materials and Suppressing Voltage Decay. ACS Applied Materials & Interfaces, 2020, 12, 13996-14004.	8.0	52
368	Effect of Growing CNTs onto Bamboo Charcoals on Adsorption of Copper Ions in Aqueous Solution. Langmuir, 2009, 25, 269-274.	3.5	51
369	Low-temperature synthesis of multilayer graphene/amorphous carbon hybrid films and their potential application in solar cells. Nanoscale Research Letters, 2012, 7, 453.	5.7	51
370	Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin. Carbon, 2014, 66, 705-712.	10.3	51
371	Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating. Electrochimica Acta, 2015, 157, 266-273.	5.2	51
372	Facile preparation of carbon nanotube aerogels with controlled hierarchical microstructures and versatile performance. Carbon, 2015, 90, 164-171.	10.3	51
373	Large Polarization of Li ₄ Ti ₅ O ₁₂ Lithiated to 0 V at Large Charge/Discharge Rates. ACS Applied Materials & Interfaces, 2016, 8, 18788-18796.	8.0	51
374	A Functionalized Carbon Surface for Highâ€Performance Sodiumâ€Ion Storage. Small, 2020, 16, e1902603.	10.0	51
375	Shape-controlled synthesis of hierarchical hollow urchin-shape α-MnO2 nanostructures and their electrochemical properties. Materials Chemistry and Physics, 2013, 140, 643-650.	4.0	50
376	Advantages of natural microcrystalline graphite filler over petroleum coke in isotropic graphite preparation. Carbon, 2015, 90, 197-206.	10.3	50
377	Flexible photodetector based on large-area few-layer MoS2. Progress in Natural Science: Materials International, 2018, 28, 563-568.	4.4	50
378	Holey graphenes as the conductive additives for LiFePO4 batteries with an excellent rate performance. Carbon, 2019, 149, 257-262.	10.3	50

#	Article	IF	CITATIONS
379	A study on charge storage mechanism of α-MnO2 by occupying tunnels with metal cations (Ba2+, K+). Journal of Power Sources, 2011, 196, 7860-7867.	7.8	49
380	Porous carbon for electrochemical capacitors prepared from a resorcinol/formaldehyde-based organic aquagel with nano-sized particles. Journal of Materials Chemistry, 2012, 22, 7158.	6.7	49
381	The preparation of graphene decorated with manganese dioxide nanoparticles by electrostatic adsorption for use in supercapacitors. Carbon, 2012, 50, 5034-5043.	10.3	49
382	Effects of state of charge on the degradation of LiFePO4/graphite batteries during accelerated storage test. Journal of Alloys and Compounds, 2015, 639, 406-414.	5.5	49
383	A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes. Electrochimica Acta, 2017, 228, 76-81.	5.2	49
384	Triaxial Nanocables of Conducting Polypyrrole@SnS ₂ @Carbon Nanofiber Enabling Significantly Enhanced Li-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 13581-13587.	8.0	49
385	Understanding the cathode electrolyte interface formation in aqueous electrolyte by scanning electrochemical microscopy. Journal of Materials Chemistry A, 2019, 7, 12993-12996.	10.3	49
386	A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 13225-13233.	10.3	49
387	A compact Bi2WO6 microflowers anode for potassium-ion storage: Taming a sequential phase evolution toward stable electrochemical cycling. Nano Energy, 2021, 82, 105784.	16.0	49
388	LiFePO4/C composite with 3D carbon conductive network for rechargeable lithium ion batteries. Electrochimica Acta, 2013, 109, 512-518.	5.2	48
389	Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. Journal of Materials Chemistry A, 2019, 7, 24857-24867.	10.3	48
390	Surface restoration induced by lubricant additive of natural minerals. Applied Surface Science, 2007, 253, 7549-7553.	6.1	47
391	Ultrahighâ€Workingâ€Frequency Embedded Supercapacitors with 1T Phase MoSe ₂ Nanosheets for Systemâ€inâ€Package Application. Advanced Functional Materials, 2019, 29, 1807116.	14.9	47
392	Room-temperature liquid metal-based anodes for high-energy potassium-based electrochemical devices. Chemical Communications, 2018, 54, 8032-8035.	4.1	47
393	Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries. Carbon, 2019, 153, 625-633.	10.3	47
394	3D hierarchical AlV3O9 microspheres as a cathode material for rechargeable aluminum-ion batteries. Electrochimica Acta, 2019, 298, 288-296.	5.2	47
395	Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries. Energy Storage Materials, 2022, 50, 641-647.	18.0	47
396	Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorobenzene as precursor. Carbon, 2007, 45, 1127-1129.	10.3	46

#	Article	IF	CITATIONS
397	Highly dispersed Pt nanoparticles by pentagon defects introduced in bamboo-shaped carbon nanotube support and their enhanced catalytic activity on methanol oxidation. Carbon, 2009, 47, 1833-1840.	10.3	46
398	Conductive graphene-based macroscopic membrane self-assembled at a liquid–air interface. Journal of Materials Chemistry, 2011, 21, 3359.	6.7	46
399	Synthesis of reduced graphene oxide/phenolic resin-based carbon composite ultrafine fibers and their adsorption performance for volatile organic compounds and water. Journal of Materials Chemistry A, 2013, 1, 9536.	10.3	46
400	Nanospace-confined formation of flattened Sn sheets in pre-seeded graphenes for lithium ion batteries. Nanoscale, 2014, 6, 9554-9558.	5.6	46
401	A dual-carbon-anchoring strategy to fabricate flexible LiMn2O4 cathode for advanced lithium-ion batteries with high areal capacity. Nano Energy, 2020, 67, 104256.	16.0	46
402	Dual electronic-ionic conductivity of pseudo-capacitive filler enables high volumetric capacitance from dense graphene micro-particles. Nano Energy, 2017, 36, 349-355.	16.0	45
403	Oxygen-enriched carbon nanotubes as a bifunctional catalyst promote the oxygen reduction/evolution reactions in Li-O2 batteries. Carbon, 2019, 141, 561-567.	10.3	45
404	Advanced Materials for Sodiumâ€lon Capacitors with Superior Energy–Power Properties: Progress and Perspectives. Small, 2020, 16, e1902843.	10.0	45
405	Preparation of mesophase-pitch-based activated carbons for electric double layer capacitors with high energy density. Microporous and Mesoporous Materials, 2010, 130, 224-228.	4.4	44
406	Hydrothermal Synthesis of Graphene/ <scp><scp>Bi</scp></scp> ₂ <scp>WO</scp> ₆ Composite with High Adsorptivity and Photoactivity for Azo Dyes. Journal of the American Ceramic Society, 2013, 96, 1562-1569.	3.8	44
407	Enhanced oxygen reducibility of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material with mild acid treatment. Journal of Power Sources, 2014, 248, 894-899.	7.8	44
408	Thermal stability and oxidation resistance of BiCuSeO based thermoelectric ceramics. Journal of Alloys and Compounds, 2014, 614, 394-400.	5.5	44
409	Polymer-coated graphene films as anti-reflective transparent electrodes for Schottky junction solar cells. Journal of Materials Chemistry A, 2016, 4, 13795-13802.	10.3	44
410	Flour food waste derived activated carbon for high-performance supercapacitors. RSC Advances, 2016, 6, 89391-89396.	3.6	44
411	Controllable Edge Exposure of MoS ₂ for Efficient Hydrogen Evolution with High Current Density. ACS Applied Energy Materials, 2018, 1, 1268-1275.	5.1	44
412	Progress and Perspective of All-Solid-State Lithium Batteries with High Performance at Room Temperature. Energy & Fuels, 2020, 34, 13456-13472.	5.1	44
413	Synthesis and application of iron-filled carbon nanotubes coated with FeCo alloy nanoparticles. Journal of Magnetism and Magnetic Materials, 2009, 321, 1924-1927.	2.3	43
414	Size-controlled synthesis of monodisperse superparamagnetic iron oxide nanoparticles. Journal of Alloys and Compounds, 2011, 509, 8549-8553.	5.5	43

#	Article	IF	CITATIONS
415	High areal specific capacity of Ni ₃ V ₂ O ₈ /carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 15517-15524.	10.3	43
416	Increase and discretization of the energy barrier for individual LiNi _x Co _y Mn _y O ₂ (<i>x</i> + 2 <i>y</i> =1) particles with the growth of a Li ₂ CO ₃ surface film. Journal of Materials Chemistry A, 2019, 7, 12723-12731.	10.3	43
417	High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes. ACS Applied Materials & Interfaces, 2019, 11, 15646-15655.	8.0	43
418	Long continuous FeNi nanowires inside carbon nanotubes: Synthesis, property and application. Journal of Physics and Chemistry of Solids, 2008, 69, 1213-1217.	4.0	42
419	Electrode thickness control: Precondition for quite different functions of graphene conductive additives in LiFePO4 electrode. Carbon, 2015, 92, 311-317.	10.3	42
420	Towards Practical Application of Paper based Printed Circuits: Capillarity Effectively Enhances Conductivity of the Thermoplastic Electrically Conductive Adhesives. Scientific Reports, 2014, 4, 6275.	3.3	42
421	Study on the reversible capacity loss of layered oxide cathode during low-temperature operation. Journal of Power Sources, 2017, 342, 24-30.	7.8	42
422	Compact Si/C anodes fabricated by simultaneously regulating the size and oxidation degree of Si for Li-ion batteries. Journal of Materials Chemistry A, 2019, 7, 24356-24365.	10.3	42
423	Thiourea-Induced N/S Dual-Doped Hierarchical Porous Carbon Nanofibers for High-Performance Lithium-Ion Capacitors. ACS Applied Energy Materials, 2020, 3, 1653-1664.	5.1	42
424	Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery. Journal of Power Sources, 2021, 505, 230062.	7.8	42
425	A Comparative Investigation on Multiwalled Carbon Nanotubes and Carbon Black as Conducting Additive in LiNi[sub 0.7]Co[sub 0.3]O[sub 2]. Electrochemical and Solid-State Letters, 2006, 9, A126.	2.2	41
426	Improvement of structural stability and electrochemical activity of a cathode material LiNi0.7Co0.3O2 by chlorine doping. Electrochimica Acta, 2007, 53, 1761-1765.	5.2	41
427	A supercapacitor constructed with a partially graphitized porous carbon and its performance over a wide working temperature range. Journal of Materials Chemistry A, 2015, 3, 18860-18866.	10.3	41
428	The different Li/Na ion storage mechanisms of nano Sb 2 O 3 anchored on graphene. Journal of Power Sources, 2018, 385, 114-121.	7.8	41
429	High performance lithium-ion capacitors based on scalable surface carved multi-hierarchical construction electrospun carbon fibers. Carbon, 2018, 138, 325-336.	10.3	41
430	Optimization of electromagnetic matching of Fe-filled carbon nanotubes/ferrite composites for microwave absorption. Journal Physics D: Applied Physics, 2009, 42, 075002.	2.8	40
431	Structural and thermal stabilities of layered Li(Ni1/3Co1/3Mn1/3)O2 materials in 18650 high power batteries. Journal of Power Sources, 2011, 196, 10322-10327.	7.8	40
432	Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. Journal of Applied Polymer Science, 2018, 135, 45787.	2.6	40

#	Article	IF	CITATIONS
433	Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anodes. Energy Storage Materials, 2019, 23, 610-616.	18.0	40
434	Basal Nanosuit of Graphite for High-Energy Hybrid Li Batteries. ACS Nano, 2020, 14, 1837-1845.	14.6	40
435	Ultrafast presodiation of graphene anodes for highâ€efficiency and highâ€rate s <scp>odiumâ€ion</scp> storage. InformaÄnÃ-Materiály, 2021, 3, 1445-1454.	17.3	40
436	Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium-ion batteries. New Carbon Materials, 2011, 26, 161-170.	6.1	39
437	Electrochemical Polymerization and Energy Storage for Poly[Ni(salen)] as Supercapacitor Electrode Material. Journal of Physical Chemistry C, 2014, 118, 9911-9917.	3.1	39
438	A Nacreâ€Like Carbon Nanotube Sheet for High Performance Liâ€Polysulfide Batteries with High Sulfur Loading. Advanced Science, 2018, 5, 1800384.	11.2	39
439	Na2Mn3+0.3Mn4+2.7O6.85: A cathode with simultaneous cationic and anionic redox in Na-ion battery. Energy Storage Materials, 2018, 14, 361-366.	18.0	39
440	Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Research, 2019, 12, 925-930.	10.4	39
441	Dual-ion hybrid supercapacitor: Integration of Li-ion hybrid supercapacitor and dual-ion battery realized by porous graphitic carbon. Journal of Energy Chemistry, 2020, 42, 180-184.	12.9	39
442	A Periodic "Self orrection―Scheme for Synchronizing Lithium Plating/Stripping at Ultrahigh Cycling Capacity. Advanced Functional Materials, 2020, 30, 1910532.	14.9	39
443	Data-Driven Methods for Battery SOH Estimation: Survey and a Critical Analysis. IEEE Access, 2021, 9, 126903-126916.	4.2	39
444	Studies of Exfoliated Graphite (EG) for Heavy Oil Sorption. Molecular Crystals and Liquid Crystals, 2000, 340, 113-119.	0.3	38
445	Effects of tin doping on physicochemical and electrochemical performances of LiFe1â^'xSnxPO4/C (0≤â‰0.07) composite cathode materials. Electrochimica Acta, 2011, 56, 7385-7391.	5.2	38
446	Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid precursors. 2D Materials, 2015, 2, 034003.	4.4	38
447	Facile Synthesis of Crystalline Polymeric Carbon Nitrides with an Enhanced Photocatalytic Performance under Visible Light. ChemCatChem, 2015, 7, 2897-2902.	3.7	38
448	In-situ growth of MnO2 crystals under nanopore-constraint in carbon nanofibers and their electrochemical performance. Scientific Reports, 2016, 6, 37368.	3.3	38
449	Electrospinning Preparation of Nanosilicon/Disordered Carbon Composite as Anode Materials in Li-Ion Battery. Electrochemical and Solid-State Letters, 2009, 12, A199.	2.2	37
450	Enhanced field emission of open-ended, thin-walled carbon nanotubes filled with ferromagnetic nanowires. Carbon, 2009, 47, 2709-2715.	10.3	37

#	Article	IF	CITATIONS
451	A Facile Surface Reconstruction Mechanism toward Better Electrochemical Performance of Li ₄ Ti ₅ O ₁₂ in Lithiumâ€ion Battery. Advanced Science, 2017, 4, 1700205.	11.2	37
452	Characterization of the porous carbon prepared by using halloysite as template and its application to EDLC. Journal of Physics and Chemistry of Solids, 2006, 67, 1186-1189.	4.0	36
453	High-yield bamboo-shaped carbon nanotubes from cresol for electrochemical application. Chemical Communications, 2008, , 2046.	4.1	36
454	Anomalous effect of K ions on electrochemical capacitance of amorphous MnO2. Journal of Power Sources, 2013, 234, 1-7.	7.8	36
455	Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation. Carbon, 2017, 122, 680-686.	10.3	36
456	In-situ polymerized cross-linked binder for cathode in lithium-sulfur batteries. Chinese Chemical Letters, 2020, 31, 570-574.	9.0	36
457	Atomic Imaging of Subsurface Interstitial Hydrogen and Insights into Surface Reactivity of Palladium Hydrides. Angewandte Chemie - International Edition, 2020, 59, 20348-20352.	13.8	36
458	Constructing a highly efficient "solid–polymer–solid―elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries. Energy and Environmental Science, 2022, 15, 1503-1511.	30.8	36
459	High loading of Pt–Ru nanocatalysts by pentagon defects introduced in a bamboo-shaped carbon nanotube support for high performance anode of direct methanol fuel cells. Electrochemistry Communications, 2009, 11, 355-358.	4.7	35
460	Porous carbons prepared from deoiled asphalt and their electrochemical properties for supercapacitors. Materials Letters, 2010, 64, 1868-1870.	2.6	35
461	Preparation and Characterization of a Poly[Ni(salen)]/Multiwalled Carbon Nanotube Composite by <i>in Situ</i> Electropolymerization as a Capacitive Material. Journal of Physical Chemistry C, 2011, 115, 11822-11829.	3.1	35
462	Catalytically oxidation of NO into NO2 at room temperature by graphitized porous nanofibers. Catalysis Today, 2013, 201, 109-114.	4.4	35
463	Facile synthesis of hierarchical porous γ-Al2O3 hollow microspheres for water treatment. Journal of Colloid and Interface Science, 2014, 417, 369-378.	9.4	35
464	A high-performance lithium ion oxygen battery consisting of Li2O2 cathode and lithiated aluminum anode with nafion membrane for reduced O2 crossover. Nano Energy, 2017, 40, 258-263.	16.0	35
465	Polymer blend techniques for designing carbon materials. Carbon, 2017, 111, 546-568.	10.3	35
466	Effects of Electrospun Carbon Nanofibers' Interlayers on High-Performance Lithium–Sulfur Batteries. Materials, 2017, 10, 376.	2.9	35
467	CsPbBr ₃ –Cs ₄ PbBr ₆ composite nanocrystals for highly efficient pure green light emission. Nanoscale, 2019, 11, 22899-22906.	5.6	35
468	Novel One-Dimensional Hollow Carbon Nanotubes/Selenium Composite for High-Performance Al-Se Batteries. ACS Applied Materials & Interfaces, 2019, 11, 45709-45716.	8.0	35

#	Article	IF	CITATIONS
469	Theoretical Investigation of the Electrochemical Performance of Transition Metal Nitrides for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2019, 123, 25025-25030.	3.1	35
470	A compact 3D interconnected sulfur cathode for high-energy, high-power and long-life lithium-sulfur batteries. Energy Storage Materials, 2019, 20, 14-23.	18.0	35
471	A highly concentrated electrolyte for high-efficiency potassium metal batteries. Chemical Communications, 2021, 57, 1034-1037.	4.1	35
472	Carbon-coated TiO2 composites for the photocatalytic degradation of low concentration benzene. New Carbon Materials, 2011, 26, 63-70.	6.1	34
473	Adsorption of dimethyl sulfide from aqueous solution by a cost-effective bamboo charcoal. Journal of Hazardous Materials, 2011, 190, 1009-1015.	12.4	34
474	Preparation of oriented graphite/polymer composite sheets with high thermal conductivities by tape casting. New Carbon Materials, 2012, 27, 241-249.	6.1	34
475	Electrospun magnetic carbon composite fibers: Synthesis and electromagnetic wave absorption characteristics. Journal of Applied Polymer Science, 2013, 127, 4288-4295.	2.6	34
476	Correlation between Microstructure and Potassium Storage Behavior in Reduced Graphene Oxide Materials. ACS Applied Materials & Interfaces, 2019, 11, 45578-45585.	8.0	34
477	Restructured rimous copper foam as robust lithium host. Energy Storage Materials, 2020, 26, 250-259.	18.0	34
478	Improving thermal and mechanical properties of the alumina filled silicone rubber composite by incorporating carbon nanotubes. New Carbon Materials, 2020, 35, 66-72.	6.1	34
479	Electrochemical synthesis of sulfate graphite intercalation compounds with different electrolyte concentrations. Journal of Physics and Chemistry of Solids, 1996, 57, 883-888.	4.0	33
480	The effect of particle size on the interaction of Pt catalyst particles with a carbon black support. New Carbon Materials, 2010, 25, 53-59.	6.1	33
481	Porous carbon nanofibers with narrow pore size distribution from electrospun phenolic resins. Materials Letters, 2011, 65, 1875-1877.	2.6	33
482	A Novel Lithiated Silicon–Sulfur Battery Exploiting an Optimized Solid‣ike Electrolyte to Enhance Safety and Cycle Life. Small, 2017, 13, 1602015.	10.0	33
483	Hierarchically structured carbon nanomaterials for electrochemical energy storage applications. Journal of Materials Research, 2018, 33, 1058-1073.	2.6	33
484	A novel plectin/integrin-targeted bispecific molecular probe for magnetic resonance/near-infrared imaging of pancreatic cancer. Biomaterials, 2018, 183, 173-184.	11.4	33
485	Synthesizing multilayer graphene from amorphous activated carbon via ammonia-assisted hydrothermal method. Carbon, 2019, 152, 24-32.	10.3	33
486	Facile Synthesis of Antâ€Nestâ€Like Porous Duplex Copper as Deeply Cycling Host for Lithium Metal Anodes. Small, 2020, 16, e2001784.	10.0	33

#	Article	IF	CITATIONS
487	Synthesis and photocatalytic activity of mesoporous g-C 3 N 4 /MoS 2 hybrid catalysts. Royal Society Open Science, 2018, 5, 180187.	2.4	32
488	NaCl-template-assisted freeze-drying synthesis of 3D porous carbon-encapsulated V2O3 for lithium-ion battery anode. Electrochimica Acta, 2019, 318, 730-736.	5.2	32
489	Integrated Structure of Cathode and Double-Layer Electrolyte for Highly Stable and Dendrite-Free All-Solid-State Li-Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 56995-57002.	8.0	32
490	Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3-D printing. Thermochimica Acta, 2020, 690, 178649.	2.7	32
491	Two-Dimensional F-Ti ₃ C ₂ T _{<i>x</i>} @Ag Composite for an Extraordinary Long Cycle Lifetime with High Specific Capacity in an Aluminum Battery. ACS Applied Materials & Interfaces, 2021, 13, 11822-11832.	8.0	32
492	A review of graphynes: Properties, applications and synthesis. New Carbon Materials, 2020, 35, 619-629.	6.1	32
493	Effect of oxidative stabilization on the sintering of mesocarbon microbeads and a study of their carbonization. Carbon, 2011, 49, 3200-3211.	10.3	31
494	Preparation of flexible phenolic resin-based porous carbon fabrics by electrospinning. Chemical Engineering Journal, 2013, 218, 232-237.	12.7	31
495	Ultrathin amorphous manganese dioxide nanosheets synthesized with controllable width. Chemical Communications, 2013, 49, 7331.	4.1	31
496	Surface iodination: A simple and efficient protocol to improve the isotropically thermal conductivity of silver-epoxy pastes. Composites Science and Technology, 2014, 99, 109-116.	7.8	31
497	Fabrication of solid-state thin-film batteries using LiMnPO4 thin films deposited by pulsed laser deposition. Thin Solid Films, 2015, 579, 81-88.	1.8	31
498	Homogenous and highly isotropic graphite produced from mesocarbon microbeads. Carbon, 2015, 94, 18-26.	10.3	31
499	Synthesis of Lithium Iron Phosphate/Carbon Microspheres by Using Polyacrylic Acid Coated Iron Phosphate Nanoparticles Derived from Iron(III) Acrylate. ChemSusChem, 2015, 8, 1009-1016.	6.8	31
500	Prelithiation treatment of graphite as cathode material for rechargeable aluminum batteries. Electrochimica Acta, 2018, 263, 68-75.	5.2	31
501	A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of NO3â^' in carbonate electrolyte. Energy Storage Materials, 2020, 24, 229-236.	18.0	31
502	Full-cycle electrochemical-thermal coupling analysis for commercial lithium-ion batteries. Applied Thermal Engineering, 2021, 184, 116258.	6.0	31
503	A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. Journal of Materials Chemistry A, 2021, 9, 7667-7674.	10.3	31
504	New origin of spirals and new growth process of carbon whiskers. Carbon, 2001, 39, 2325-2333.	10.3	30

#	Article	IF	CITATIONS
505	Effects of current densities on the formation of LiCoO2/graphite lithium ion battery. Journal of Solid State Electrochemistry, 2011, 15, 1977-1985.	2.5	30
506	Liâ€ion Reaction to Improve the Rate Performance of Nanoporous Anatase TiO ₂ Anodes. Energy Technology, 2013, 1, 668-674.	3.8	30
507	NH3-activated carbon nanofibers for low-concentration NO removal at room temperature. Catalysis Communications, 2015, 62, 83-88.	3.3	30
508	Micron-sized Spherical Si/C Hybrids Assembled via Water/Oil System for High-Performance Lithium Ion Battery. Electrochimica Acta, 2016, 211, 982-988.	5.2	30
509	Achieving Low Overpotential Lithium–Oxygen Batteries by Exploiting a New Electrolyte Based on <i>N</i> , <i>N</i> ′-Dimethylpropyleneurea. ACS Energy Letters, 2017, 2, 313-318.	17.4	30
510	Improved cycle performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by Ga doping for lithium ion battery cathode material. Solid State Ionics, 2017, 301, 64-71.	2.7	30
511	A Three‣ayer Allâ€Inâ€One Flexible Graphene Film Used as an Integrated Supercapacitor. Advanced Materials Interfaces, 2017, 4, 1700004.	3.7	30
512	Evolution of Solid Electrolyte Interface on TiO ₂ Electrodes in an Aqueous Li-Ion Battery Studied Using Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2019, 123, 12797-12806.	3.1	30
513	Mechanistic investigation of silver vanadate as superior cathode for high rate and durable zinc-ion batteries. Journal of Colloid and Interface Science, 2020, 560, 659-666.	9.4	30
514	Scalable synthesis of lotus-seed-pod-like Si/SiOx@CNF: Applications in freestanding electrode and flexible full lithium-ion batteries. Carbon, 2020, 158, 163-171.	10.3	30
515	In Situ Observation of Interface Evolution on a Graphite Anode by Scanning Electrochemical Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 37047-37053.	8.0	30
516	Electrochemical deposition mechanism of sodium and potassium. Energy Storage Materials, 2021, 36, 91-98.	18.0	30
517	Electronic and magnetic properties of acid-adsorbed nanoporous activated carbon fibers. Carbon, 2008, 46, 110-116.	10.3	29
518	Inorganic-based sol–gel synthesis of nano-structured LiFePO4/C composite materials for lithium ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 1353-1362.	2.5	29
519	pH-Mediated fine-tuning of optical properties of graphene oxide membranes. Carbon, 2012, 50, 3233-3239.	10.3	29
520	A Hollow Spherical Carbon Derived from the Spray Drying of Corncob Lignin for Highâ€Rateâ€Performance Supercapacitors. Chemistry - an Asian Journal, 2017, 12, 503-506.	3.3	29
521	Investigation of iron hexacyanoferrate as a high rate cathode for aqueous batteries: Sodium-ion batteries. Electrochimica Acta, 2018, 270, 96-103.	5.2	29
522	Capacity Loss Mechanism of the Li ₄ Ti ₅ O ₁₂ Microsphere Anode of Lithium-Ion Batteries at High Temperature and Rate Cycling Conditions. ACS Applied Materials & Interfaces, 2019, 11, 37357-37364.	8.0	29

#	Article	IF	CITATIONS
523	An ion-conducting SnS–SnS ₂ hybrid coating for commercial activated carbons enabling their use as high performance anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 10761-10768.	10.3	29
524	A fast screening framework for second-life batteries based on an improved bisecting K-means algorithm combined with fast pulse test. Journal of Energy Storage, 2020, 31, 101739.	8.1	29
525	Simultaneously Homogenized Electric Field and Ionic Flux for Reversible Ultrahigh-Areal-Capacity Li Deposition. Nano Letters, 2020, 20, 5662-5669.	9.1	29
526	Recent Advances of Electroplating Additives Enabling Lithium Metal Anodes to Applicable Battery Techniques. Energy and Environmental Materials, 2021, 4, 284-292.	12.8	29
527	A thin and high-strength composite polymer solid-state electrolyte with a highly efficient and uniform ion-transport network. Journal of Materials Chemistry A, 2021, 9, 14344-14351.	10.3	29
528	Preparation and application of bamboo-like carbon nanotubes in lithium ion batteries. Journal of Power Sources, 2008, 184, 566-569.	7.8	28
529	Formation and conversion mechanisms between single-crystal gamma-MnOOH and manganese oxides. Materials Research Bulletin, 2012, 47, 1740-1746.	5.2	28
530	Incorporation of nanostructured manganese dioxide into carbon nanofibers and its electrochemical performance. Materials Letters, 2012, 72, 18-21.	2.6	28
531	Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol. New Carbon Materials, 2015, 30, 566-571.	6.1	28
532	Mesoporous Cr ₂ O ₃ nanotubes as an efficient catalyst for Li–O ₂ batteries with low charge potential and enhanced cyclic performance. Journal of Materials Chemistry A, 2016, 4, 7727-7735.	10.3	28
533	Molecular Sieve Induced Solution Growth of Li ₂ O ₂ in the Li–O ₂ Battery with Largely Enhanced Discharge Capacity. ACS Applied Materials & Interfaces, 2018, 10, 7989-7995.	8.0	28
534	Abundant grain boundaries activate highly efficient lithium ion transportation in high rate Li4Ti5O12 compact microspheres. Journal of Materials Chemistry A, 2019, 7, 1168-1176.	10.3	28
535	Fracture mechanism of flexible graphite sheets. Carbon, 2002, 40, 2169-2176.	10.3	27
536	The decisive roles of chlorine-contained precursor and hydrogen for the filling Fe nanowires into carbon nanotubes. Materials Chemistry and Physics, 2009, 113, 634-637.	4.0	27
537	Synthesis and Enhanced Field-Emission of Thin-Walled, Open-Ended, and Well-Aligned N-Doped Carbon Nanotubes. Nanoscale Research Letters, 2010, 5, 941-948.	5.7	27
538	Growth of carbon nanotubes on low-cost bamboo charcoal for Pb(II) removal from aqueous solution. Chemical Engineering Journal, 2012, 184, 193-197.	12.7	27
539	The improvement of the high-rate charge/discharge performances of LiFePO4 cathode material by Sn doping. Journal of Solid State Electrochemistry, 2012, 16, 1-8.	2.5	27
540	Preparation of graphene/carbon hybrid nanofibers and their performance for NO oxidation. Carbon, 2015, 87, 282-291.	10.3	27

#	Article	IF	CITATIONS
541	Discovering a First-Order Phase Transition in the Li–CeO ₂ System. Nano Letters, 2017, 17, 1282-1288.	9.1	27
542	Different solid electrolyte interface and anode performance of CoCO3 microspheres due to graphene modification and LiCoO2 CoCO3@rGO full cell study. Electrochimica Acta, 2018, 270, 192-204.	5.2	27
543	Combination Effect of Bulk Structure Change and Surface Rearrangement on the Electrochemical Kinetics of LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂ During Initial Charging Processes. ACS Applied Materials & Interfaces, 2018, 10, 41370-41379.	8.0	27
544	A novel graphite-based dual ion battery using PP14NTF2 ionic liquid for preparing graphene structure. Carbon, 2018, 138, 52-60.	10.3	27
545	Hexagonal Composite CuSe@C as a Positive Electrode for High-Performance Aluminum Batteries. ACS Applied Energy Materials, 2020, 3, 11445-11455.	5.1	27
546	Few-layer Ti3C2T MXene delaminated via flash freezing for high-rate electrochemical capacitive energy storage. Journal of Energy Chemistry, 2020, 48, 233-240.	12.9	27
547	Room-temperature extraction of individual elements from charged spent LiFePO4 batteries. Rare Metals, 2022, 41, 1595-1604.	7.1	27
548	Improved filling rate and enhanced magnetic properties of Fe-filled carbon nanotubes by annealing and magnetic separation. Materials Research Bulletin, 2008, 43, 3441-3446.	5.2	26
549	Coal tar pitch-based porous carbon by one dimensional nano-sized MgO template. Journal of Physics and Chemistry of Solids, 2012, 73, 1428-1431.	4.0	26
550	The use of asphalt emulsions as a binder for the preparation of polycrystalline graphite. Carbon, 2013, 58, 238-241.	10.3	26
551	An interlaced silver vanadium oxide–graphene hybrid with high structural stability for use in lithium ion batteries. Chemical Communications, 2014, 50, 13447-13450.	4.1	26
552	Preparation of the cactus-like porous manganese oxide assisted with surfactant sodium dodecyl sulfate for supercapacitors. Journal of Alloys and Compounds, 2015, 621, 86-92.	5.5	26
553	A statistical model for effective thermal conductivity of composite materials. International Journal of Thermal Sciences, 2016, 104, 348-356.	4.9	26
554	Acetic acid-induced preparation of anatase TiO ₂ mesocrystals at low temperature for enhanced Li-ion storage. Journal of Materials Chemistry A, 2017, 5, 12236-12242.	10.3	26
555	A Dual-Function Na ₂ SO ₄ Template Directed Formation of Cathode Materials with a High Content of Sulfur Nanodots for Lithium-Sulfur Batteries. Small, 2017, 13, 1700358.	10.0	26
556	General synthesis of high-performing magneto-conjugated polymer core–shell nanoparticles for multifunctional theranostics. Nano Research, 2017, 10, 704-717.	10.4	26
557	High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery. Journal of Power Sources, 2014, 268, 882-886.	7.8	25
558	Carbon coated porous tin peroxide/carbon composite electrode for lithium-ion batteries with excellent electrochemical properties. Carbon, 2015, 81, 739-747.	10.3	25

#	Article	IF	CITATIONS
559	Nitrogen-rich hierarchical porous hollow carbon nanofibers for high-performance supercapacitor electrodes. RSC Advances, 2016, 6, 41473-41476.	3.6	25
560	Understanding the enhanced electrochemical performance of samarium substituted Li[Li0.2Mn0.54â^'xSmxCo0.13Ni0.13]O2 cathode material for lithium ion batteries. Solid State Ionics, 2016, 293, 7-12.	2.7	25
561	N, S co-doped porous carbon nanospheres with a high cycling stability for sodium ion batteries. New Carbon Materials, 2017, 32, 517-526.	6.1	25
562	Easy fabrication of flexible and multilayer nanocarbon-based cathodes with a high unreal sulfur loading by electrostatic spraying for lithium-sulfur batteries. Carbon, 2018, 138, 18-25.	10.3	25
563	Mitigating evolution of lattice oxygen and stabilizing structure of lithium-rich oxides by fabricating surface oxygen defects. Electrochimica Acta, 2019, 328, 134987.	5.2	25
564	Three-dimensional carbon felt host for stable sodium metal anode. Carbon, 2019, 155, 50-55.	10.3	25
565	An Efficient Synthetic Method to Prepare High-Performance Ni-rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ for Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 7403-7411.	5.1	25
566	Environment-friendly preparation of exfoliated graphite and functional graphite sheets. Journal of Materiomics, 2021, 7, 136-145.	5.7	25
567	Synergistic PF6â^' and FSIâ^' intercalation enables stable graphite cathode for potassium-based dual ion battery. Carbon, 2021, 178, 363-370.	10.3	25
568	Recent Advances in Stability of Carbonâ€Based Anodes for Potassiumâ€lon Batteries. Batteries and Supercaps, 2021, 4, 554-570.	4.7	25
569	An urchin-like graphite-based anode material for lithium ion batteries. Electrochimica Acta, 2010, 55, 5519-5522.	5.2	24
570	Electropolymerization and electrochemical performance of salen-type redox polymer on different carbon supports for supercapacitors. Electrochimica Acta, 2012, 76, 1-7.	5.2	24
571	Si Nanoparticles Intercalated into Interlayers of Slightly Exfoliated Graphite filled by Carbon as Anode with High Volumetric Capacity for Lithium-ion Battery. Electrochimica Acta, 2015, 184, 364-370.	5.2	24
572	Stabilizing the structure and suppressing the voltage decay of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for Li-ion batteries via multifunctional PrÁoxide surface modification. Ceramics International, 2016, 42, 18620-18630.	4.8	24
573	Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt. Journal of Materials Science, 2017, 52, 5788-5798.	3.7	24
574	A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte. ACS Applied Materials & Interfaces, 2017, 9, 2526-2534.	8.0	24
575	Utilizing an autogenously protective atmosphere to synthesize a Prussian white cathode with ultrahigh capacity-retention for potassium-ion batteries. Chemical Communications, 2019, 55, 12555-12558.	4.1	24
576	Constructing a Reinforced and Gradient Solid Electrolyte Interphase on Si Nanoparticles by In‧itu Thiolâ€Ene Click Reaction for Long Cycling Lithiumâ€ion Batteries. Small, 2021, 17, e2102316.	10.0	24

#	Article	IF	CITATIONS
577	Lithium metal recycling from spent lithium-ion batteries by cathode overcharging process. Rare Metals, 2022, 41, 1843-1850.	7.1	24
578	Electrochemical synthesis and characterization of ferric chloride-graphite intercalation compounds in aqueous solution. Carbon, 1998, 36, 383-390.	10.3	23
579	A novel air electrode design: A key to high rate capability and long life span. Journal of Power Sources, 2014, 255, 187-196.	7.8	23
580	Surface oxidation of activated electrospun carbon nanofibers and their adsorption performance for benzene, butanone and ethanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 66-71.	4.7	23
581	Tailoring Native Defects and Zinc Impurities in Li ₄ Ti ₅ O ₁₂ : Insights from First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 5238-5245.	3.1	23
582	MoO ₃ @Ni nanowire array hierarchical anode for high capacity and superior longevity all-metal-oxide asymmetric supercapacitors. RSC Advances, 2016, 6, 110112-110119.	3.6	23
583	GO/auricularia-derived hierarchical porous carbon used for capacitive deionization with high performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547, 134-140.	4.7	23
584	Enhanced thermal conductivity by combined fillers in polymer composites. Thermochimica Acta, 2019, 676, 198-204.	2.7	23
585	Carbon sphere-templated synthesis of porous yolk-shell ZnCo2O4 spheres for high-performance lithium storage. Journal of Alloys and Compounds, 2019, 780, 65-71.	5.5	23
586	A combination of hierarchical pore and buffering layer construction for ultrastable nanocluster Si/SiOx anode. Nano Research, 2020, 13, 2987-2993.	10.4	23
587	A Comparative Investigation of Single Crystal and Polycrystalline Niâ€Rich NCMs as Cathodes for Lithiumâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	12.8	23
588	The effect of pre-carbonization of mesophase pitch-based activated carbons on their electrochemical performance for electric double-layer capacitors. Journal of Solid State Electrochemistry, 2011, 15, 787-794.	2.5	22
589	Preparation of highly oxidized nitrogen-doped carbon nanotubes. Nanotechnology, 2012, 23, 155601.	2.6	22
590	Elevated electrochemical performance of (NH4)3AlF6-coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method. Electrochimica Acta, 2014, 117, 41-47.	5.2	22
591	Preparation of porous carbon nanofibers with controllable pore structures for low-concentration NO removal at room temperature. New Carbon Materials, 2016, 31, 277-286.	6.1	22
592	High-performance supercapacitors based on graphene/MnO ₂ /activated carbon fiber felt composite electrodes in different neutral electrolytes. RSC Advances, 2016, 6, 12525-12529.	3.6	22
593	Sulfur-functionalized three-dimensional graphene monoliths as high-performance anodes for ultrafast sodium-ion storage. Chemical Communications, 2018, 54, 4317-4320.	4.1	22
594	Horizontal Stress Release for Protuberanceâ€Free Li Metal Anode. Advanced Functional Materials, 2020, 30, 2002522.	14.9	22

#	Article	IF	CITATIONS
595	Thermal and gas purification of natural graphite for nuclear applications. Carbon, 2021, 173, 769-781.	10.3	22
596	Ni single atoms anchored on nitrogen-doped graphene as H2-Evolution cocatalyst of SrTiO3(Al)/CoO for photocatalytic overall water splitting. Carbon, 2021, 183, 763-773.	10.3	22
597	Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells. Chemical Communications, 2011, 47, 3900.	4.1	21
598	Effects of TiO2 crystal structure on the performance of Li4Ti5O12 anode material. Journal of Alloys and Compounds, 2012, 513, 524-529.	5.5	21
599	Adsorption of benzene and ethanol on activated carbon nanofibers prepared by electrospinning. Adsorption, 2013, 19, 1035-1043.	3.0	21
600	All-Carbon Electrodes for Flexible Solar Cells. Applied Sciences (Switzerland), 2018, 8, 152.	2.5	21
601	Modulating Surface Composition and Oxygen Reduction Reaction Activities of Pt–Ni Octahedral Nanoparticles by Microwave-Enhanced Surface Diffusion during Solvothermal Synthesis. Chemistry of Materials, 2018, 30, 4355-4360.	6.7	21
602	A Bilayer 2D-WS2/Organic-Based Heterojunction for High-Performance Photodetectors. Nanomaterials, 2019, 9, 1312.	4.1	21
603	Coordinated Adsorption and Catalytic Conversion of Polysulfides Enabled by Perovskite Bimetallic Hydroxide Nanocages for Lithiumâ€Sulfur Batteries. Small, 2021, 17, e2101538.	10.0	21
604	Microstructure and thermal expansion behavior of natural microcrystalline graphite. Carbon, 2021, 177, 90-96.	10.3	21
605	Structural Insights into the Lithium Ion Storage Behaviors of Niobium Tungsten Double Oxides. Chemistry of Materials, 2022, 34, 388-398.	6.7	21
606	Femtomolarâ€Level Molecular Sensing of Monolayer Tungsten Diselenide Induced by Heteroatom Doping with Longâ€Term Stability. Advanced Functional Materials, 2022, 32, .	14.9	21
607	Unraveling the Influence of Metal Substrates on Graphene Nucleation from First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 23239-23245.	3.1	20
608	Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting. Nanoscale, 2016, 8, 13228-13235.	5.6	20
609	Modifying porous carbon nanofibers with MnO _x –CeO ₂ –Al ₂ O ₃ mixed oxides for NO catalytic oxidation at room temperature. Catalysis Science and Technology, 2016, 6, 422-425.	4.1	20
610	A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore. Materials, 2017, 10, 414.	2.9	20
611	Transferrable polymeric carbon nitride/nitrogen-doped graphene films for solid state optoelectronics. Carbon, 2018, 138, 69-75.	10.3	20
612	Direct assembly of micron-size porous graphene spheres with a high density as supercapacitor materials. Carbon, 2019, 149, 492-498.	10.3	20

#	Article	IF	CITATIONS
613	Ultrasensitive Organicâ€Modulated CsPbBr 3 Quantum Dot Photodetectors via Fast Interfacial Charge Transfer. Advanced Materials Interfaces, 2020, 7, 1901741.	3.7	20
614	Dataâ€Driven Fast Clustering of Secondâ€Life Lithiumâ€lon Battery: Mechanism and Algorithm. Advanced Theory and Simulations, 2020, 3, 2000109.	2.8	20
615	Ultrasensitive molecular sensing of few-layer niobium diselenide. Journal of Materials Chemistry A, 2021, 9, 2725-2733.	10.3	20
616	pHâ€Dependent Morphology Control of Cellulose Nanofiber/Graphene Oxide Cryogels. Small, 2021, 17, e2005564.	10.0	20
617	Promoting the reversibility of lithium ion/lithium metal hybrid graphite anode by regulating solid electrolyte interface. Nano Energy, 2021, 90, 106510.	16.0	20
618	A new method synthesizing the encapsulated ZrC with graphitic layers. Materials Research Bulletin, 2001, 36, 933-938.	5.2	19
619	Preparation of porous carbons from halloysite-sucrose mixtures. Clays and Clay Minerals, 2006, 54, 485-490.	1.3	19
620	Effect of heat treatment on adsorption performance and photocatalytic activity of TiO2-mounted activated carbon cloths. Catalysis Today, 2008, 139, 64-68.	4.4	19
621	Effect of sulfur on enhancing nitrogen-doping and magnetic properties of carbon nanotubes. Nanoscale Research Letters, 2011, 6, 77.	5.7	19
622	Dense graphene monolith oxygen cathodes for ultrahigh volumetric energy densities. Energy Storage Materials, 2017, 9, 134-139.	18.0	19
623	A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries. New Carbon Materials, 2017, 32, 289-296.	6.1	19
624	Silver Nanoparticles-Loaded Exfoliated Graphite and Its Anti-Bacterial Performance. Applied Sciences (Switzerland), 2017, 7, 852.	2.5	19
625	High Areal Capacity Liâ€lon Storage of Binderâ€Free Metal Vanadate/Carbon Hybrid Anode by Ionâ€Exchange Reaction. Small, 2018, 14, e1801832.	10.0	19
626	Li-rich layered oxide coated by nanoscale MoOx film with oxygen vacancies and lower oxidation state as a high-performance cathode material. Ceramics International, 2019, 45, 439-448.	4.8	19
627	3D porous Li3VO4@C composite anodes with ultra-high rate capacity for lithium-ion capacitors. Electrochimica Acta, 2020, 355, 136819.	5.2	19
628	Influence of iron (III) acetylacetonate on structure and electrical conductivity of Fe3O4/carbon composite nanofibers. Polymer, 2012, 53, 6000-6007.	3.8	18
629	Effect of feed rate on the production of nitrogen-doped graphene from liquid acetonitrile. Carbon, 2012, 50, 3659-3665.	10.3	18
630	Understanding the electrochemical superiority of 0.6Li[Li 1/3 Mn 2/3]O 2 -0.4Li[Ni 1/3 Co 1/3 Mn 1/3]O 2 nanofibers as cathode material for lithium ion batteries. Electrochimica Acta, 2015, 173, 672-679.	5.2	18

#	Article	IF	CITATIONS
631	Flexible copper wires through galvanic replacement of zinc paste: a highly cost-effective technology for wiring flexible printed circuits. Journal of Materials Chemistry C, 2015, 3, 8329-8335.	5.5	18
632	Mechanical Alloying and Spark Plasma Sintering of BiCuSeO Oxyselenide: Synthesis Process and Thermoelectric Properties. Journal of the American Ceramic Society, 2016, 99, 507-514.	3.8	18
633	A soluble phenolic mediator contributing to enhanced discharge capacity and low charge overpotential for lithium-oxygen batteries. Electrochemistry Communications, 2017, 79, 68-72.	4.7	18
634	Pyrolytic carbon supported alloying metal dichalcogenides as free-standing electrodes for efficient hydrogen evolution. Carbon, 2018, 132, 512-519.	10.3	18
635	An asymmetric supercapacitor based on a NiO/Co3O4@NiCo cathode and an activated carbon anode. New Carbon Materials, 2020, 35, 112-120.	6.1	18
636	Investigating the increased-capacity mechanism of porous carbon materials in lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 14031-14042.	10.3	18
637	Seeded growth of branched iron–nitrogen-doped carbon nanotubes as a high performance and durable non-precious fuel cell cathode. Carbon, 2020, 162, 300-307.	10.3	18
638	Adsorption Characteristics of Trace Volatile Organic Compounds on Activated Carbon Fibres at Room Temperature. Adsorption Science and Technology, 2002, 20, 495-500.	3.2	17
639	Water vapor adsorption on low-temperature exfoliated graphene nanosheets. Journal of Physics and Chemistry of Solids, 2012, 73, 1440-1443.	4.0	17
640	Gel-cast-foam-assisted combustion synthesis of elongated β-Si3N4 crystals and their effects on improving the thermal conductivity of silicone composites. Journal of Alloys and Compounds, 2012, 540, 165-169.	5.5	17
641	A Carbonâ€Sulfur Hybrid with Pomegranateâ€like Structure for Lithiumâ€Sulfur Batteries. Chemistry - an Asian Journal, 2016, 11, 1343-1347.	3.3	17
642	Pt Submonolayers on Au Nanoparticles: Coverage-Dependent Atomic Structures and Electrocatalytic Stability on Methanol Oxidation. Journal of Physical Chemistry C, 2016, 120, 28664-28671.	3.1	17
643	Neoadjuvant nano-photothermal therapy used before operation effectively assists in surgery for breast cancer. Nanoscale, 2019, 11, 706-716.	5.6	17
644	Sulfur-Doped Reduced Graphene Oxide for Enhanced Sodium Ion Pseudocapacitance. Nanomaterials, 2019, 9, 752.	4.1	17
645	Graphene quantum dots piecing together into graphene on nano Au for overall water splitting. Carbon, 2021, 178, 265-272.	10.3	17
646	Graphene conductive additives for lithium ion batteries: Origin, progress and prospect. Chinese Science Bulletin, 2017, 62, 3743-3756.	0.7	17
647	Wettability of natural microcrystalline graphite filler with pitch in isotropic graphite preparation. Fuel, 2016, 180, 743-748.	6.4	16
648	Pressure Sensors: Ultrasensitive Pressure Detection of Fewâ€Layer MoS ₂ (Adv. Mater.) Tj ETQq0 0 () rgBT/Ov	erlock 10 Tf 5

#	Article	IF	CITATIONS
649	Facile Preparation of Highâ€Performance Stretchable Fiberâ€Like Electrodes and Supercapacitors. ChemistrySelect, 2018, 3, 4179-4184.	1.5	16
650	Graphene-Directed Formation of a Nitrogen-Doped Porous Carbon Sheet with High Catalytic Performance for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 13508-13514.	3.1	16
651	Steam Selective Etching: A Strategy to Effectively Enhance the Flexibility and Suppress the Volume Change of Carbonized Paper-Supported Electrodes. ACS Nano, 2019, 13, 5731-5741.	14.6	16
652	Temperature-resistant and flexible supercapacitors based on 10-inch wafer-scale nanocarbon films. Science China Materials, 2019, 62, 947-954.	6.3	16
653	MoS ₂ /carbon composites prepared by ball-milling and pyrolysis for the high-rate and stable anode of lithium ion capacitors. RSC Advances, 2019, 9, 42316-42323.	3.6	16
654	Realizing Ultralow Concentration Gelation of Graphene Oxide with Artificial Interfaces. Advanced Materials, 2019, 31, e1805075.	21.0	16
655	High-performance graphene/disodium terephthalate electrodes with ether electrolyte for exceptional cooperative sodiation/desodiation. Nano Energy, 2020, 77, 105203.	16.0	16
656	A Tripleâ€Gradient Host for Long Cycling Lithium Metal Anodes at Ultrahigh Current Density. Small, 2020, 16, 2001992.	10.0	16
657	Structure and thermal stability of LiNi0.8Co0.15Al0.05O2 after long cycling at high temperature. Journal of Power Sources, 2020, 450, 227695.	7.8	16
658	Air stable and highly efficient Bi ³⁺ -doped Cs ₂ SnCl ₆ for blue light-emitting diodes. RSC Advances, 2021, 11, 26415-26420.	3.6	16
659	Porous Carbon Nanofibers: Preparation and Potential Applications. Current Organic Chemistry, 2013, 17, 1434-1447.	1.6	16
660	Influence of reaction temperature on the particle-composition distributions and activities of polyol-synthesized Pt-Ru/C catalysts for methanol oxidation. Journal of Power Sources, 2009, 191, 233-239.	7.8	15
661	Improvement of the hydrophilicity of electrospun porous carbon nanofibers by grafting phenylsulfonic acid groups. Journal of Colloid and Interface Science, 2013, 394, 177-182.	9.4	15
662	Anomalous effect of K ion on crystallinity and capacitance of the manganese dioxide. Journal of Power Sources, 2013, 225, 226-230.	7.8	15
663	Characterization of graphite dust produced by pneumatic lift. Nuclear Engineering and Design, 2016, 305, 104-109.	1.7	15
664	Application of nano Al2O3 particles as precipitate nucleus for preparation of high rate nickel-rich cathode materials. Journal of Power Sources, 2019, 439, 227038.	7.8	15
665	Investigations on the Surface Degradation of LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ after Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 7378-7385.	6.7	15
666	Understanding the Conductive Carbon Additive on Electrode/Electrolyte Interface Formation in Lithium-Ion Batteries via in situ Scanning Electrochemical Microscopy. Frontiers in Chemistry, 2020, 8, 114.	3.6	15

#	Article	IF	CITATIONS
667	Enhanced Electrode Matching Assisted by In Situ Etching and Co-Doping toward High-Rate Dual-Carbon Lithium-Ion Capacitors. ACS Sustainable Chemistry and Engineering, 2021, 9, 10054-10061.	6.7	15
668	Nitrogen-doped hollow graphite granule as anode materials for high-performance lithium-ion batteries. Journal of Solid State Chemistry, 2021, 303, 122500.	2.9	15
669	Redox poly[Ni(saldMp)] modified activated carbon electrode in electrochemical supercapacitors. Electrochimica Acta, 2010, 55, 6101-6108.	5.2	14
670	Preparation of a carbon nanofiber/natural graphite composite and an evaluation of its electrochemical properties as an anode material for a Li-ion battery. New Carbon Materials, 2010, 25, 89-96.	6.1	14
671	Electropolymerization of Ni(salen) on carbon nanotube carrier as a capacitive material by pulse potentiostatic method. Science China Chemistry, 2012, 55, 1338-1344.	8.2	14
672	Bi-material anode based on porous graphitic carbon for Li4Ti5O12-PGC/LiFePO4 hybrid battery capacitor. Electrochimica Acta, 2013, 107, 413-418.	5.2	14
673	Hybrid graphene/amorphous carbon films with tadpole-like structures for high-performance photovoltaic applications. RSC Advances, 2013, 3, 22295.	3.6	14
674	A second-order cross fractal meta-material structure used in low-frequency microwave absorbing materials. Applied Physics A: Materials Science and Processing, 2014, 115, 627-635.	2.3	14
675	In-situ polymerized lithium polyacrylate (PAALi) as dual-functional lithium source for high-performance layered oxide cathodes. Electrochimica Acta, 2017, 249, 43-51.	5.2	14
676	The microstructure and texture of Gilsocarbon graphite. Carbon, 2019, 153, 428-437.	10.3	14
677	Application of Alternating Current Scanning Electrochemical Microscopy in Lithiumâ€lon Batteries: Local Visualization of the Electrode Surface. ChemElectroChem, 2019, 6, 4854-4858.	3.4	14
678	Beneficiation of ultra-large flake graphite and the preparation of flexible graphite sheets from it. New Carbon Materials, 2019, 34, 205-210.	6.1	14
679	Sodium-ion capacitors with superior energy-power performance by using carbon-based materials in both electrodes. Progress in Natural Science: Materials International, 2020, 30, 13-19.	4.4	14
680	Surface substitution of polyanion to improve structure stability and electrochemical properties of lithium-rich layered cathode oxides. Applied Surface Science, 2020, 512, 145741.	6.1	14
681	A Fishingâ€Netâ€Like 3D Host for Robust and Ultrahighâ€Rate Lithium Metal Anodes. Small, 2021, 17, e2007231	. 10.0	14
682	Highly Sensitive CuInS ₂ /ZnS Core–Shell Quantum Dot Photodetectors. ACS Applied Electronic Materials, 2021, 3, 1236-1243.	4.3	14
683	Selective Gas Permeation in Defect-Engineered Bilayer Graphene. Nano Letters, 2021, 21, 2183-2190.	9.1	14
684	Synergistic effect of carbon fiber and alumina in improving the thermal conductivity of polydimethylsiloxane composite. Thermochimica Acta, 2021, 703, 178980.	2.7	14

#	Article	IF	CITATIONS
685	A gradient screening approach for retired lithium-ion batteries based on X-ray computed tomography images. RSC Advances, 2020, 10, 19117-19123.	3.6	14
686	Nano-Porous Silica Aerogels as Promising Biomaterials for Oral Drug Delivery of Paclitaxel. Journal of Biomedical Nanotechnology, 2019, 15, 1532-1545.	1.1	14
687	Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance. PLoS ONE, 2016, 11, e0166529.	2.5	14
688	Deeply Cyclable and Ultrahighâ€Rate Lithium Metal Anodes Enabled by Coaxial Nanochamber Heterojunction on Carbon Nanofibers. Advanced Science, 2021, 8, e2101940.	11.2	14
689	Whiskers with apex angle 135° growing by a disclination growth mechanism. Journal of Crystal Growth, 2002, 245, 77-83.	1.5	13
690	The influences of multi-walled carbon nanotube addition to the anode on the performance of direct methanol fuel cells. Journal of Power Sources, 2008, 184, 381-384.	7.8	13
691	Graphitic Porous Carbons Prepared by a Modified Template Method. Chemistry Letters, 2009, 38, 90-91.	1.3	13
692	The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium–Oxygen Batteries. ChemSusChem, 2015, 8, 4235-4241.	6.8	13
693	Prediction of interfacial thermal resistance of carbon fiber in one dimensional fiber-reinforced composites using laser flash analysis. Composites Science and Technology, 2015, 110, 69-75.	7.8	13
694	Electrosprayed Robust Graphene Layer Constructing Ultrastable Electrode Interface for High-Voltage Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 37034-37046.	8.0	13
695	Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials. Journal of Materials Science, 2020, 55, 9414-9424.	3.7	13
696	Facile preparation of V2O5/PEDOT core-shell nanobelts with excellent lithium storage performance. Electrochimica Acta, 2020, 336, 135723.	5.2	13
697	Ultrahigh capacity and cyclability of dual-phase TiO ₂ nanowires with low working potential at room and subzero temperatures. Journal of Materials Chemistry A, 2021, 9, 9256-9265.	10.3	13
698	Pseudocapacitive porous hard carbon anode with controllable pyridinic nitrogen and thiophene sulfur co-doping for high-power dual-carbon sodium ion hybrid capacitors. Journal of Materials Chemistry A, 2021, 9, 20483-20492.	10.3	13
699	The optical texture of PGA, Gilsocarbon, NBG-18, and IG-110 nuclear graphite. Journal of Nuclear Materials, 2021, 552, 153013.	2.7	13
700	Silicon-Encapsulated Hollow Carbon Nanofiber Networks as Binder-Free Anodes for Lithium Ion Battery. Journal of Nanomaterials, 2014, 2014, 1-10.	2.7	12
701	Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas. PLoS ONE, 2015, 10, e0136939.	2.5	12
702	Influence of charge rate on the cycling degradation of LiFePO4/mesocarbon microbead batteries under low temperature. Ionics, 2017, 23, 1967-1978.	2.4	12

#	Article	IF	CITATIONS
703	Design of a Rubbery Carboxymethyl Cellulose/Polyacrylic Acid Hydrogel via Visible-Light-Triggered Polymerization. Macromolecular Materials and Engineering, 2017, 302, 1600509.	3.6	12
704	H2S + SO2 produces water-dispersed sulfur nanoparticles for lithium-sulfur batteries. Nano Energy, 2017, 41, 665-673.	16.0	12
705	A Reduced Graphene Oxide/Disodium Terephthalate Hybrid as a Highâ€Performance Anode for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2017, 23, 16586-16592.	3.3	12
706	A Stable Crossâ€Linked Binder Network for SnO ₂ Anode with Enhanced Sodiumâ€lon Storage Performance. ChemistrySelect, 2017, 2, 11365-11369.	1.5	12
707	Melamine-sponge-derived non-precious fuel cell electrocatalyst with hierarchical pores and tunable nitrogen chemical states for exceptional oxygen reduction reaction activity. Materials Today Energy, 2018, 9, 271-278.	4.7	12
708	Fast and reversible redox reaction of polyNi(salphen)@reduced graphene oxide/multiwall carbon nanotubes composite for supercapacitors. Electrochimica Acta, 2018, 284, 355-365.	5.2	12
709	Interconnected Ultrasmall V ₂ O ₃ and Li ₄ Ti ₅ O ₁₂ Particles Construct Robust Interfaces for Long-Cycling Anodes of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 29993-30000.	8.0	12
710	A Conductive/Ferroelectric Hybrid Interlayer for Highly Improved Trapping of Polysulfides in Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2019, 6, 1900984.	3.7	12
711	Ultrafine hierarchically porous carbon fibers and their adsorption performance for ethanol and acetone. New Carbon Materials, 2019, 34, 533-538.	6.1	12
712	Allâ€Solidâ€State Batteries: Low Resistance–Integrated Allâ€Solidâ€State Battery Achieved by Li ₇ La ₃ Zr ₂ O ₁₂ Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder (Adv. Funct. Mater. 1/2019). Advanced Functional Materials, 2019, 29, 1970006.	14.9	12
713	Identical cut-off voltage <i>versus</i> equivalent capacity: an objective evaluation of the impact of dopants in layered oxide cathodes. Journal of Materials Chemistry A, 2021, 9, 11219-11227.	10.3	12
714	Multi-ion Strategy toward Highly Durable Calcium/Sodium–Sulfur Hybrid Battery. Nano Letters, 2021, 21, 3548-3556.	9.1	12
715	A nanoscale interlayer void design enabling high-performance SnO2-carbon anodes. Carbon, 2021, 183, 486-494.	10.3	12
716	Simple Synthesis of K _{0.5} VOPO ₄ ·1.5H ₂ O/Graphene Oxide Composite as a Cathode Material for Potassium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 445-451.	5.1	12
717	Vertical Graphenes Grown on a Flexible Graphite Paper as an All-Carbon Current Collector towards Stable Li Deposition. Research, 2020, 2020, 7163948.	5.7	12
718	Kinetics of the thermal decomposition of intercalation compounds during exfoliation. New Carbon Materials, 2006, 21, 315-319.	6.1	11
719	Soft magnetic performance improvement of Fe-filled carbon nanotubes by water-assisted pyrolysis route. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 867-873.	1.8	11
720	Effect of Fe3+ on the synthesis and electrochemical performance of nanostructured MnO2. Materials Chemistry and Physics, 2012, 133, 437-444.	4.0	11

#	Article	IF	CITATIONS
721	Percolation transition in thermal conductivity of β-Si3N4 filledepoxy. Solid State Communications, 2013, 158, 46-50.	1.9	11
722	Lithium titanate hybridized with trace amount of graphene used as an anode for a high rate lithium ion battery. Electrochimica Acta, 2014, 142, 247-253.	5.2	11
723	Solid-State Electrolytes: Progress and Perspective of Solid-State Lithium-Sulfur Batteries (Adv. Funct.) Tj ETQq1 1	0.784314 14.9	rgBT /Overl
724	Flexible C–Mo ₂ C fiber film with self-fused junctions as a long cyclability anode material for sodium-ion battery. RSC Advances, 2018, 8, 16657-16662.	3.6	11
725	Efficient Construction of a C60 Interlayer for Mechanically Robust, Dendrite-free, and Ultrastable Solid-State Batteries. IScience, 2020, 23, 101636.	4.1	11
726	Preparation and performance of electrochemical glucose sensors based on copper nanoparticles loaded on flexible graphite sheet. New Carbon Materials, 2020, 35, 410-419.	6.1	11
727	Interfacial kinetics induced phase separation enhancing low-temperature performance of lithium-ion batteries. Nano Energy, 2020, 75, 104977.	16.0	11
728	Toward real-time monitoring of lithium metal growth and dendrite formation surveillance for safe lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 7090-7099.	10.3	11
729	Research Advances of Carbon-based Anode Materials for Sodium-Ion Batteries. Acta Chimica Sinica, 2017, 75, 163.	1.4	11
730	Enhanced oxygen reduction performance of Pt catalysts by nano-loops formed on the surface of carbon nanofiber support. Carbon, 2008, 46, 2140-2143.	10.3	10
731	Synthesis criterion for a metal chloride-graphite intercalation compound by a molten salt method. New Carbon Materials, 2009, 24, 18-22.	6.1	10
732	Synthesis, field emission and microwave absorption of carbon nanotubes filled with ferromagnetic nanowires. Science China Technological Sciences, 2010, 53, 1453-1459.	4.0	10
733	Selective Microwave Absorption of Iron-Rich Carbon Nanotube Composites. Journal of Nanoscience and Nanotechnology, 2010, 10, 1808-1813.	0.9	10
734	Hydrothermal Synthesis of Iodine-Doped Nanoplates with Enhanced Visible and Ultraviolet-Induced Photocatalytic Activities. International Journal of Photoenergy, 2012, 2012, 1-12.	2.5	10
735	Asymmetric Electrodes Constructed with PAN-Based Activated Carbon Fiber in Capacitive Deionization. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	10
736	Interface enhancement of carbon nanotube/mesocarbon microbead isotropic composites. Composites Part A: Applied Science and Manufacturing, 2014, 56, 44-50.	7.6	10
737	Effects of nitrogen pressure and diluent content on the morphology of gel-cast-foam-assisted combustion synthesis of elongated β-Si3N4 particles. Ceramics International, 2014, 40, 12553-12560.	4.8	10
738	Flexible asymmetric supercapacitor based on MnO2 honeycomb structure. Chinese Chemical Letters, 2018, 29, 616-619.	9.0	10

#	Article	IF	CITATIONS
739	Lavender-like cobalt hydroxide nanoflakes deposited on nickel nanowire arrays for high-performance supercapacitors. RSC Advances, 2018, 8, 17263-17271.	3.6	10
740	Thermal design and optimization of lithium ion batteries for unmanned aerial vehicles. Energy Storage, 2019, 1, e48.	4.3	10
741	Fast three-dimensional assembly of MoS2 inspired by the gelation of graphene oxide. Science China Materials, 2019, 62, 745-750.	6.3	10
742	Defect engineering of vanadium pentoxide for efficient lithium-ion storage. Electrochimica Acta, 2020, 333, 135513.	5.2	10
743	Ultrasmall Blueshift of Near-Infrared Fluorescence in Phase-Stable Cs2SnI6 Thin Films. Physical Review Applied, 2020, 14, .	3.8	10
744	Facile synthesis of FeVO@C materials as high-performance composite cathode for lithium-ion hybrid capacitor. Journal of Alloys and Compounds, 2020, 835, 155398.	5.5	10
745	Ultrasensitive Non-Enzymatic Glucose Sensors Based on Hybrid Reduced Graphene Oxide and Carbonized Silk Fabric Electrodes Decorated with Cu Nanoflowers. Journal of the Electrochemical Society, 2020, 167, 127501.	2.9	10
746	Exfoliated graphite blocks with resilience prepared by room temperature exfoliation and their application for oil-water separation. Journal of Hazardous Materials, 2022, 424, 127724.	12.4	10
747	In Situ Preparation of MXenes in Ambient-Temperature Organic Ionic Liquid Aluminum Batteries with Ultrastable Cycle Performance. ACS Applied Materials & Interfaces, 2021, 13, 55112-55122.	8.0	10
748	Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation. Journal of Nanoparticle Research, 2011, 13, 6569-6578.	1.9	9
749	Nanostructured manganese dioxides as active materials for micro-supercapacitors. Micro and Nano Letters, 2012, 7, 744.	1.3	9
750	Modified reverse microemulsion synthesis for iron oxide/silica core–shell colloidal particles. Journal of Sol-Gel Science and Technology, 2013, 66, 180-186.	2.4	9
751	Metallicity retained by covalent functionalization of graphene with phenyl groups. Nanoscale, 2013, 5, 7537.	5.6	9
752	Supercapacitors: A Metalâ€Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm ^{â^3} (Adv. Mater. 48/2015). Advanced Materials, 2015, 27, 7898-7898.	21.0	9
753	Graphene/carbon composite nanofibers for NO oxidation at room temperature. Catalysis Science and Technology, 2015, 5, 827-829.	4.1	9
754	Dense yet highly ion permeable graphene electrodes obtained by capillary-drying of a holey graphene oxide assembly. Journal of Materials Chemistry A, 2019, 7, 12691-12697.	10.3	9
755	Enhanced electrochemical performance of salen-type transition metal polymer with electron-donating substituents. lonics, 2019, 25, 1045-1055.	2.4	9
756	Facile method of synthesizing multilayer graphene capsuled sulfur nanoparticles for water treatment. Applied Surface Science, 2020, 502, 144194.	6.1	9

#	Article	IF	CITATIONS
757	A Graphite Intercalation Composite as the Anode for the Potassium-Ion Oxygen Battery in a Concentrated Ether-Based Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 37027-37033.	8.0	9
758	Structural dimension gradient design of oxygen framework to suppress the voltage attenuation and hysteresis in lithium-rich materials. Chemical Engineering Journal, 2022, 427, 130723.	12.7	9
759	Synthesis and Microwave Absorbing Properties of FeCoNi Alloy Particles/Graphite Flaky Composites. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2010, 25, 406-410.	1.3	9
760	Mesoporous carbon nanosheets derived from tubular halloysite and furfuryl alcohol with different concentrations. Materials Letters, 2010, 64, 2444-2446.	2.6	8
761	Nitrogen-enriched hierarchical porous carbon with enhanced performance in supercapacitors and lithium–sulfur batteries. RSC Advances, 2015, 5, 75403-75410.	3.6	8
762	Sacrificial Poly(propylene carbonate) Membrane for Dispersing Nanoparticles and Preparing Artificial Solid Electrolyte Interphase on Li Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 27087-27094.	8.0	8
763	Optimization of the preparation conditions of KOH-activated, PAN-based carbon ellipsoids by orthogonal experimental analysis. New Carbon Materials, 2020, 35, 131-139.	6.1	8
764	Single Atomic Pt on SrTiO3 Catalyst in Reverse Water Gas Shift Reactions. Catalysts, 2021, 11, 738.	3.5	8
765	Heterogeneous Degradation in Thick Nickelâ€Rich Cathodes During Highâ€Temperature Storage and Mitigation of Thermal Instability by Regulating Cationic Disordering. Small, 2021, 17, e2102055.	10.0	8
766	A kind of carbon whiskers in new structure and morphology. Science in China Series B: Chemistry, 2001, 44, 55-62.	0.8	7
767	Preparation and performance of biologically activated bamboo charcoal for removing quinoline. Journal of Physics and Chemistry of Solids, 2010, 71, 704-707.	4.0	7
768	Temperature effect on synthesis of different carbon nanostructures by sulfur-assisted chemical vapor deposition. Materials Letters, 2011, 65, 587-590.	2.6	7
769	Sol-Gel-Hydrothermal Synthesis of the Heterostructured <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>TiO < xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>Bi International Journal of Photoenergy, 2012, 2012, 1-12.</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math 	/mml:mte nmi:mtext	xt>c>
770	Improved electrochemical performances of nanocrystalline LiFePO4/C composite cathode via V-doping and VO2(B) coating. Journal of Physics and Chemistry of Solids, 2012, 73, 1463-1468.	4.0	7
771	Freezeâ€drying method prepared <scp>UHMWPE/CNT</scp> s composites with optimized micromorphologies and improved tribological performance. Journal of Applied Polymer Science, 2015, 132, .	2.6	7
772	First principles study of ruthenium(<scp>ii</scp>) sensitizer adsorption on anatase TiO ₂ (001) surface. RSC Advances, 2015, 5, 60230-60236.	3.6	7
773	Electrospun LiMn1.5Ni0.5O4 hollow nanofibers as advanced cathodes for high rate and long cycle life Li-ion batteries. Journal of Alloys and Compounds, 2017, 729, 354-359.	5.5	7
774	Enhanced electrochemical performance of nitrogen-doped graphene and poly[Ni(salen)] composite electrodes for supercapacitors. Ionics, 2018, 24, 3143-3153.	2.4	7

#	Article	IF	CITATIONS
775	A high-performance Ce and Sn co-doped cathode material with enhanced cycle performance and suppressed voltage decay for lithium ion batteries. Ceramics International, 2019, 45, 20780-20787.	4.8	7
776	Highly crystalline CsPbI ₂ Br films for efficient perovskite solar cells <i>via</i> compositional engineering. RSC Advances, 2019, 9, 30534-30540.	3.6	7
777	An â€~ice-melting' kinetic control strategy for highly photocatalytic organic nanocrystals. Journal of Materials Chemistry A, 2020, 8, 25275-25282.	10.3	7
778	Laminar Metal Foam: A Soft and Highly Thermally Conductive Thermal Interface Material with a Reliable Joint for Semiconductor Packaging. ACS Applied Materials & Interfaces, 2021, 13, 15791-15801.	8.0	7
779	Reduced thermal boundary conductance in GaN-based electronic devices introduced by metal bonding layer. Nano Research, 2021, 14, 3616-3620.	10.4	7
780	Adsorption of Volatile Organic Compounds on Activated Carbon Fiber Preparedby Carbon Dioxide. Molecular Crystals and Liquid Crystals, 2002, 388, 23-28.	0.9	6
781	Electrochemical performances of layered LiNi0.7CO0.3–xMxO2 (M=Al, Mn, Cr; x=0.05) cathode materials for rechargeable lithium batteries. Journal of Physics and Chemistry of Solids, 2008, 69, 1246-1248.	4.0	6
782	Improved Efficiency of Graphene/Si Heterojunction Solar Cells by Optimizing Hydrocarbon Feed Rate. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	6
783	Monolithic organic/inorganic ternary nanohybrids toward electron transfer cascade for enhanced visible-light photocatalysis. RSC Advances, 2015, 5, 23174-23180.	3.6	6
784	An â€~H'-shape three-dimensional meta-material used in honeycomb structure absorbing material. Applied Physics A: Materials Science and Processing, 2015, 118, 1099-1106.	2.3	6
785	Stabilizing the Oxygen Ions and Alleviating the Surface Structure Evolution of Li-Excess Layered Cathode for Advanced Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A2441-A2447.	2.9	6
786	Micro-mesoporous graphitic carbon nanofiber membranes. Carbon, 2018, 132, 746-748.	10.3	6
787	sp–sp ² hybrid-conjugated microporous polymer-derived Pd-encapsulated porous carbon materials for lithium–sulfur batteries. Chemical Communications, 2019, 55, 10084-10087.	4.1	6
788	Combining Multiple Methods for Recycling of Kish Graphite from Steelmaking Slags and Oil Sorption Performance of Kish-Based Expanded Graphite. ACS Omega, 2021, 6, 9868-9875.	3.5	6
789	Stable Interface Chemistry and Multiple Ion Transport of Composite Electrolyte Contribute to Ultraâ€long Cycling Solid‣tate LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ /Lithium Metal Batteries. Angewandte Chemie 2021 133 24873-24880	2.0	6
790	Na0.76V6O15/Activated Carbon Hybrid Cathode for High-Performance Lithium-Ion Capacitors. Materials, 2021, 14, 122.	2.9	6
791	Adsorption of Volatile Organic Compounds in Nitrogen Streams on Oxidized Activated Carbon Fibres. Adsorption Science and Technology, 2001, 19, 423-433.	3.2	5
792	Microstructure and Photocatalytic Decomposition of Methylene Blue by TiO2-Mounted Halloysite, a Natural Tubular Mineral. Acta Geologica Sinica, 2006, 80, 278-284.	1.4	5

#	Article	IF	CITATIONS
793	Preparation of activated carbon microspheres from phenolic resin with metal compounds by sub- and supercritical water activation. New Carbon Materials, 2010, 25, 109-113.	6.1	5
794	A novel design of extrusion container for large steel tube extrusion process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 228, 255-265.	2.4	5
795	Structure and electrochemical performance of hollow tube activated carbon prepared from cotton as electrode material for electric double layer capacitor. Chemical Research in Chinese Universities, 2016, 32, 82-89.	2.6	5
796	Biomass Carbonization: Biomass Organs Control the Porosity of Their Pyrolyzed Carbon (Adv. Funct.) Tj ETQq0 0	0 [gBT /O	veglock 10 Tf
797	Suppressing the voltage decay of lithium-rich cathode for Li-Ion batteries via Pt nanoparticles surface modification. Ceramics International, 2020, 46, 26564-26571.	4.8	5
798	Bacterial Cellulose-derived Three-dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	5
799	Growth and Electrochemical Behavior of Poly[Ni(saldMp)] on Carbon Nanotubes as Potential Supercapacitor Materials. Bulletin of the Korean Chemical Society, 2012, 33, 1972-1978.	1.9	5
800	Scalable synthesis of the mono-dispersed silver micro-dendrites and their applications in the ultralow cost printed electrically conductive adhesives. , 2013, , .		4
801	Electricity generation and local ion ordering induced by cation-controlled selective anion transportation through graphene oxide membranes. 2D Materials, 2014, 1, 034004.	4.4	4
802	Understanding the Charge Storage Mechanism and Electrochemical Performance on the Poly[Ni(salen)]-modified Electrode Electropolymerized with Different Sweep Rate. Electrochemistry, 2017, 85, 461-468.	1.4	4
803	Controllable Electrochemical Fabrication of KO ₂ -Decorated Binder-Free Cathodes for Rechargeable Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 17156-17166.	8.0	4
804	Interface metallization enabled an ultra-stable Fe ₂ O ₃ hierarchical anode for pseudocapacitors. RSC Advances, 2020, 10, 8636-8644.	3.6	4
805	A Highly Sensitive Electrochemical Glucose Sensor Based on Room Temperature Exfoliated Graphite-Derived Film Decorated with Dendritic Copper. Materials, 2021, 14, 5067.	2.9	4
806	Progress on perovskite-based solar cells. Chinese Science Bulletin, 2016, 61, 489-500.	0.7	4
807	Nanostructured LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ as a cathode material for highâ€power lithiumâ€ion battery. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 527-530.	1.5	3
808	Chemisorption of hydrogen sulfide on halloysiteâ€based porous clay heterostructures modified with potassium permanganate. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 879-885.	1.5	3
809	Hydrogen Evolution: Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production (Adv. Funct. Mater. 44/2015). Advanced Functional Materials, 2015, 25, 6952-6952.	14.9	3
810	A cross-talk EGFR/VEGFR-targeted bispecific nanoprobe for magnetic resonance/near-infrared fluorescence imaging of colorectal cancer. MRS Communications, 2018, 8, 1008-1017.	1.8	3

#	Article	IF	CITATIONS
811	Hollow "graphene―microtubes using polyacrylonitrile nanofiber template and potential applications of field emission. Carbon, 2020, 167, 439-445.	10.3	3
812	Blow-spun N-doped carbon fiber based high performance flexible lithium ion capacitors. RSC Advances, 2020, 10, 9833-9839.	3.6	3
813	Effect of CO in activating gas on the pore structure of activated carbon fiber with CO2 activation. Journal of Materials Science Letters, 2003, 22, 293-295.	0.5	2
814	Effect of Temperature on the Adsorption of Organic Vapours on Activated Carbon Fibres. Adsorption Science and Technology, 2004, 22, 327-335.	3.2	2
815	Removal of volatile organic compounds by adsorption and photocatalytic oxydation. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 450-452.	1.0	2
816	Sorption of Viscous Organics by Macroporous Carbons. , 2008, , 711-734.		2
817	Super-low turn-on and threshold electric fields of plasma-treated partly Fe-filled carbon nanotube films. Materials Research Bulletin, 2010, 45, 568-571.	5.2	2
818	Synthesis of porous graphitic carbon from mesocarbon microbeads by one-step route. Journal of Porous Materials, 2013, 20, 1323-1328.	2.6	2
819	Enhanced Transparent Conductive Properties of Graphene/Carbon Nano-Composite Films. Journal of Nanoscience and Nanotechnology, 2013, 13, 942-945.	0.9	2
820	Electrolytes: In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries (Adv. Energy Mater. 15/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	19.5	2
821	Synergistic effect of manganese oxide nanoparticles and graphene nanosheets in composite anodes for lithium ion batteries. Materials Research Express, 2015, 2, 015503.	1.6	2
822	The formation and electrochemical property of lithium-excess cathode material Li1.2Ni0.13Co0.13Mn0.54O2 with petal-like nanoplate microstructure. Ionics, 2017, 23, 2285-2291.	2.4	2
823	Family of Magicâ€Sized Carbon Clusters on Transition Metal Substrates. Advanced Functional Materials, 2020, 30, 2006671.	14.9	2
824	Interface Improvement of Li _{6.4} La ₃ Zr _{1.6} Ta _{0.6} O ₁₂ @La ₂ Sn and Cathode Transfer Printing Technology with Splendid Electrochemical Performance for Solid-State Lithium Batteries, ACS Applied Materials & amp: Interfaces, 2021, 13, 39414-39423.	sub>2 <td>ub>O₇</td>	ub>O ₇
825	Rational Electrolyte Design toward Cyclability Remedy for Roomâ€Temperature Sodium–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	2.0	2
826	Incoherent phonon transport dominates heat conduction across van der Waals superlattices. Applied Physics Letters, 2022, 121, .	3.3	2
827	A binder-free web-like silicon-carbon nanofiber-graphene hybrid membrane for use as the anode of a lithium-ion battery. Carbon, 2016, 110, 520.	10.3	1
828	Microhoneycomb Monoliths Prepared by the Unidirectional Freeze-drying of Cellulose Nanofiber Based Sols: Method and Extensions. Journal of Visualized Experiments, 2018, , .	0.3	1

#	Article	IF	CITATIONS
829	Exploration of the form factors of turbulence kinetic energy transfer for shear exfoliation of graphene. Nanotechnology, 2021, 32, 265601.	2.6	1
830	Efficient lead-free perovskite solar cells enabled by polymer induced trap passivation for FASnI3 layer. , 2020, , .		1
831	Collaborative Innovation Between Shenzhen Municipal Government and Tsinghua University. Education in the Asia-Pacific Region, 2020, , 165-171.	0.4	1
832	A free-standing 3D porous all-ceramic cathode for high capacity, long cycle life Li–O ₂ batteries. Chemical Communications, 2021, 57, 12792-12795.	4.1	1
833	Effect of Oxidation Treatment on Surface Fractal Dimension of Activated Carbon Fiber. Chemistry Letters, 2002, 31, 76-77.	1.3	0
834	A.C. impedance spectrum analysis of the intercalation mechanism in hcooh-gic formation. Molecular Crystals and Liquid Crystals, 2002, 388, 9-14.	0.9	0
835	A study of nano-structured manganese dioxides and their composites as electrode materials for micro supercapacitors. , 2012, , .		0
836	Improvement of the thermal conductivity by surface iodination. , 2013, , .		0
837	Siliconâ€Sulfur Batteries: A Novel Lithiated Silicon–Sulfur Battery Exploiting an Optimized Solidâ€Like Electrolyte to Enhance Safety and Cycle Life (Small 3/2017). Small, 2017, 13, .	10.0	0
838	Energy Storage: A Dual-Function Na2 SO4 Template Directed Formation of Cathode Materials with a High Content of Sulfur Nanodots for Lithium-Sulfur Batteries (Small 27/2017). Small, 2017, 13, .	10.0	0
839	Sodium Ion Capacitors: The Interplay of Oxygen Functional Groups and Folded Texture in Densified Graphene Electrodes for Compact Sodium-Ion Capacitors (Adv. Energy Mater. 11/2018). Advanced Energy Materials, 2018, 8, 1870050.	19.5	0
840	Tuning hybrid liquid/solid electrolytes by lowering Li salt concentration for lithium batteries. Chinese Physics B, 2018, 27, 068201.	1.4	0
841	Chemical Vapor Transport Deposition of Stable Cubic CsPbI3 Optical Films on the Porous Alumina Substrate. MRS Advances, 2019, 4, 1973-1979.	0.9	0
842	The effect of hydroiodic (HI) acid on the optoelectronic properties of CsPbI3 films and their photovoltaic performance. , 2019, , .		0
843	Lithium Metal Anodes: A Tripleâ€Gradient Host for Long Cycling Lithium Metal Anodes at Ultrahigh Current Density (Small 30/2020). Small, 2020, 16, 2070167.	10.0	0
844	Heterogeneous Degradation in Thick Nickelâ€Rich Cathodes During Highâ€Temperature Storage and Mitigation of Thermal Instability by Regulating Cationic Disordering (Small 34/2021). Small, 2021, 17, 2170177.	10.0	0