
Kensuke Oikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9780569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunology, Immunotherapy, 2017, 66, 705-716.	4.2	128
2	Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunology, Immunotherapy, 2017, 66, 877-890.	4.2	126
3	c-Met is a novel tumor associated antigen for T-cell based immunotherapy against NK/T cell lymphoma. Oncolmmunology, 2015, 4, e976077.	4.6	35
4	Epigenetic modification augments the immunogenicity of human leukocyte antigen G serving as a tumor antigen for T cell-based immunotherapy. Oncolmmunology, 2016, 5, e1169356.	4.6	34
5	CD47 blockade enhances the efficacy of intratumoral STING-targeting therapy by activating phagocytes. Journal of Experimental Medicine, 2021, 218, .	8.5	27
6	Targeting HER-3 to elicit antitumor helper T cells against head and neck squamous cell carcinoma. Scientific Reports, 2015, 5, 16280.	3.3	22
7	Intratumoral STING activations overcome negative impact of cisplatin on antitumor immunity by inflaming tumor microenvironment in squamous cell carcinoma. Biochemical and Biophysical Research Communications, 2020, 522, 408-414.	2.1	19
8	Intratumoral injection of IFN-β induces chemokine production in melanoma and augments the therapeutic efficacy of anti-PD-L1 mAb. Biochemical and Biophysical Research Communications, 2017, 490, 521-527.	2.1	15
9	Phosphorylated vimentin as an immunotherapeutic target against metastatic colorectal cancer. Cancer Immunology, Immunotherapy, 2020, 69, 989-999.	4.2	15
10	Assessment of the change in cetuximabâ€induced antibodyâ€dependent cellular cytotoxicity activity of natural killer cells by steroid. Head and Neck, 2016, 38, 410-416.	2.0	14
11	Targeting phosphorylated p53 to elicit tumor-reactive T helper responses against head and neck squamous cell carcinoma. Oncolmmunology, 2018, 7, e1466771.	4.6	14
12	PD-L1-specific helper T-cells exhibit effective antitumor responses: new strategy of cancer immunotherapy targeting PD-L1 in head and neck squamous cell carcinoma. Journal of Translational Medicine, 2019, 17, 207.	4.4	13
13	Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. Oncolmmunology, 2021, 10, 1856545.	4.6	13
14	A critical role of STING-triggered tumor-migrating neutrophils for anti-tumor effect of intratumoral cGAMP treatment. Cancer Immunology, Immunotherapy, 2021, 70, 2301-2312.	4.2	11
15	A stealth antigen SPESP1, which is epigenetically silenced in tumors, is a suitable target for cancer immunotherapy. Cancer Science, 2021, 112, 2705-2713.	3.9	6
16	Clinicopathological features of small nonfunctioning pancreatic neuroendocrine tumors. World Journal of Gastroenterology, 2014, 20, 17949-17954.	3.3	6
17	Successful curative resection of gallbladder cancer following S-1 chemotherapy: A case report and review of the literature. Oncology Letters, 2014, 8, 2443-2447.	1.8	5
18	A tumor metastasisâ \in associated molecule <scp>TWIST1</scp> is a favorable target for cancer immunotherapy due to its immunogenicity. Cancer Science, 2022, 113, 2526-2535.	3.9	4

#	Article	IF	CITATIONS
19	SMARCB1 (INI1) retained but SMARCA4 (BRG1) negative atypical teratoid/rhabdoid tumor arising at the bilateral cerebellopontine angles: a case report. Journal of Surgical Case Reports, 2021, 2021, rjab400.	0.4	1
20	A 47-Year-Old Woman With Pulmonary Nodules and Facial Hemispasms. Chest, 2020, 158, e197-e204.	0.8	0