Charles M Rudin List of Publications by Year in descending order Source: https://exaly.com/author-pdf/97800/publications.pdf Version: 2024-02-01 383 papers 57,707 citations 106 h-index 227 g-index 402 all docs 402 docs citations 402 times ranked 59161 citing authors | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. New England Journal of Medicine, 2015, 373, 1627-1639. | 13.9 | 7,973 | | 2 | Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nature Genetics, 2019, 51, 202-206. | 9.4 | 2,702 | | 3 | Using Multiplexed Assays of Oncogenic Drivers in Lung Cancers to Select Targeted Drugs. JAMA - Journal of the American Medical Association, 2014, 311, 1998. | 3.8 | 1,386 | | 4 | Akt Stimulates Aerobic Glycolysis in Cancer Cells. Cancer Research, 2004, 64, 3892-3899. | 0.4 | 1,297 | | 5 | Efficacy and Safety of Vismodegib in Advanced Basal-Cell Carcinoma. New England Journal of Medicine, 2012, 366, 2171-2179. | 13.9 | 1,201 | | 6 | Molecular Determinants of Response to Anti–Programmed Cell Death (PD)-1 and Anti–Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non–Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. Journal of Clinical Oncology, 2018, 36, 633-641. | 0.8 | 1,109 | | 7 | <i>STK11/LKB1</i> Mutations and PD-1 Inhibitor Resistance in <i>KRAS</i> -Mutant Lung Adenocarcinoma. Cancer Discovery, 2018, 8, 822-835. | 7.7 | 1,108 | | 8 | Inhibition of the Hedgehog Pathway in Advanced Basal-Cell Carcinoma. New England Journal of Medicine, 2009, 361, 1164-1172. | 13.9 | 1,054 | | 9 | Treatment of Medulloblastoma with Hedgehog Pathway Inhibitor GDC-0449. New England Journal of Medicine, 2009, 361, 1173-1178. | 13.9 | 951 | | 10 | Genetic Variants in the UDP-glucuronosyltransferase 1A1 Gene Predict the Risk of Severe Neutropenia of Irinotecan. Journal of Clinical Oncology, 2004, 22, 1382-1388. | 0.8 | 927 | | 11 | Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature Genetics, 2012, 44, 1111-1116. | 9.4 | 906 | | 12 | Pneumonitis in Patients Treated With Anti–Programmed Death-1/Programmed Death Ligand 1 Therapy. Journal of Clinical Oncology, 2017, 35, 709-717. | 0.8 | 829 | | 13 | Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer. Cancer Cell, 2018, 33, 843-852.e4. | 7.7 | 827 | | 14 | <i>Smoothened</i> Mutation Confers Resistance to a Hedgehog Pathway Inhibitor in Medulloblastoma. Science, 2009, 326, 572-574. | 6.0 | 774 | | 15 | Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nature Reviews Cancer, 2019, 19, 289-297. | 12.8 | 692 | | 16 | Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18. | 13.5 | 691 | | 17 | Combination Epigenetic Therapy Has Efficacy in Patients with Refractory Advanced Non–Small Cell Lung Cancer. Cancer Discovery, 2011, 1, 598-607. | 7.7 | 596 | | 18 | DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature, 2011, 471, 325-330. | 13.7 | 573 | | # | Article | IF | Citations | |----|--|------|-----------| | 19 | Small-cell lung cancer. Nature Reviews Disease Primers, 2021, 7, 3. | 18.1 | 560 | | 20 | Response to MET Inhibitors in Patients with Stage IV Lung Adenocarcinomas Harboring <i>MET</i> Mutations Causing Exon 14 Skipping. Cancer Discovery, 2015, 5, 842-849. | 7.7 | 514 | | 21 | Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Annals of Oncology, 2017, 28, 583-589. | 0.6 | 510 | | 22 | Phase I Trial of Hedgehog Pathway Inhibitor Vismodegib (GDC-0449) in Patients with Refractory, Locally Advanced or Metastatic Solid Tumors. Clinical Cancer Research, 2011, 17, 2502-2511. | 3.2 | 499 | | 23 | Phase I Study of Navitoclax (ABT-263), a Novel Bcl-2 Family Inhibitor, in Patients With Small-Cell Lung Cancer and Other Solid Tumors. Journal of Clinical Oncology, 2011, 29, 909-916. | 0.8 | 498 | | 24 | RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nature Communications, 2015, 6, 6377. | 5.8 | 498 | | 25 | Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved and Emerging Therapies. Cancer Discovery, 2017, 7, 596-609. | 7.7 | 490 | | 26 | High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nature Medicine, 2019, 25, 1928-1937. | 15.2 | 485 | | 27 | Phase II Study of Single-Agent Navitoclax (ABT-263) and Biomarker Correlates in Patients with Relapsed Small Cell Lung Cancer. Clinical Cancer Research, 2012, 18, 3163-3169. | 3.2 | 470 | | 28 | Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nature Medicine, 2017, 23, 1362-1368. | 15.2 | 462 | | 29 | Small cell lung cancer: Where do we go from here?. Cancer, 2015, 121, 664-672. | 2.0 | 459 | | 30 | A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Science Translational Medicine, 2015, 7, 302ra136. | 5.8 | 436 | | 31 | The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nature Genetics, 2015, 47, 250-256. | 9.4 | 434 | | 32 | Lung Cancer in Never Smokers: Clinical Epidemiology and Environmental Risk Factors. Clinical Cancer Research, 2009, 15, 5626-5645. | 3.2 | 433 | | 33 | Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncology, The, 2017, 18, 42-51. | 5.1 | 412 | | 34 | Pembrolizumab or Placebo Plus Etoposide and Platinum as First-Line Therapy for Extensive-Stage Small-Cell Lung Cancer: Randomized, Double-Blind, Phase III KEYNOTE-604 Study. Journal of Clinical Oncology, 2020, 38, 2369-2379. | 0.8 | 410 | | 35 | A Primary Xenograft Model of Small-Cell Lung Cancer Reveals Irreversible Changes in Gene Expression Imposed by Culture <i>In vitro</i> . Cancer Research, 2009, 69, 3364-3373. | 0.4 | 406 | | 36 | Cigarette smoking and lung cancerâ€"relative risk estimates for the major histological types from a pooled analysis of caseâ€"control studies. International Journal of Cancer, 2012, 131, 1210-1219. | 2.3 | 390 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 37 | Ado-Trastuzumab Emtansine for Patients With <i>HER2</i> I) - Mutant Lung Cancers: Results From a Phase II Basket Trial. Journal of Clinical Oncology, 2018, 36, 2532-2537. | 0.8 | 381 | | 38 | Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis. Cancer Cell, 2017, 31, 286-299. | 7.7 | 370 | | 39 | Cabozantinib in patients with advanced RET -rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncology, The, 2016, 17, 1653-1660. | 5.1 | 365 | | 40 | Next-Generation Sequencing of Pulmonary Large Cell Neuroendocrine Carcinoma Reveals Small Cell
Carcinoma–like and Non–Small Cell Carcinoma–like Subsets. Clinical Cancer Research, 2016, 22,
3618-3629. | 3.2 | 342 | | 41 | A combinatorial strategy for treating KRAS-mutant lung cancer. Nature, 2016, 534, 647-651. | 13.7 | 337 | | 42 | CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. Journal of Clinical Investigation, 2016, 126, 2610-2620. | 3.9 | 336 | | 43 | Unravelling the biology of SCLC: implications for therapy. Nature Reviews Clinical Oncology, 2017, 14, 549-561. | 12.5 | 336 | | 44 | Alterations of immune response of non-small cell lung cancer with Azacytidine. Oncotarget, 2013, 4, 2067-2079. | 0.8 | 336 | | 45 | APOPTOSIS AND DISEASE: Regulation and Clinical Relevance of Programmed Cell Death. Annual Review of Medicine, 1997, 48, 267-281. | 5.0 | 335 | | 46 | Small Cell Lung Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2013, 11, 78-98. | 2.3 | 331 | | 47 | Effects of Co-occurring Genomic Alterations on Outcomes in Patients with ⟨i⟩KRAS⟨ i⟩-Mutant Nonâ€"Small Cell Lung Cancer. Clinical Cancer Research, 2018, 24, 334-340. | 3.2 | 323 | | 48 | Genomic Analysis of Smoothened Inhibitor Resistance in Basal Cell Carcinoma. Cancer Cell, 2015, 27, 327-341. | 7.7 | 316 | | 49 | The future of epigenetic therapy in solid tumours—lessons from the past. Nature Reviews Clinical Oncology, 2013, 10, 256-266. | 12.5 | 299 | | 50 | Itraconazole and Arsenic Trioxide Inhibit Hedgehog Pathway Activation and Tumor Growth Associated with Acquired Resistance to Smoothened Antagonists. Cancer Cell, 2013, 23, 23-34. | 7.7 | 296 | | 51 | High Yield of RNA Sequencing for Targetable Kinase Fusions in Lung Adenocarcinomas with No
Mitogenic Driver Alteration Detected by DNA Sequencing and Low Tumor Mutation Burden. Clinical
Cancer Research, 2019, 25, 4712-4722. | 3.2 | 292 | | 52 | Randomized, Double-Blind, Phase II Study of Temozolomide in Combination With Either Veliparib or Placebo in Patients With Relapsed-Sensitive or Refractory Small-Cell Lung Cancer. Journal of Clinical Oncology, 2018, 36,
2386-2394. | 0.8 | 276 | | 53 | Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nature Medicine, 2020, 26, 259-269. | 15.2 | 274 | | 54 | NK cell–mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science, 2018, 362, 1416-1422. | 6.0 | 267 | | # | Article | IF | Citations | |----|--|------|-----------| | 55 | Treatment of Small-Cell Lung Cancer: American Society of Clinical Oncology Endorsement of the American College of Chest Physicians Guideline. Journal of Clinical Oncology, 2015, 33, 4106-4111. | 0.8 | 265 | | 56 | Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nature Reviews Clinical Oncology, 2020, 17, 360-371. | 12.5 | 263 | | 57 | Safety and Efficacy of Re-treating with Immunotherapy after Immune-Related Adverse Events in Patients with NSCLC. Cancer Immunology Research, 2018, 6, 1093-1099. | 1.6 | 258 | | 58 | Tumor Mutation Burden and Efficacy of EGFR-Tyrosine Kinase Inhibitors in Patients with <i>EGFR</i> -Mutant Lung Cancers. Clinical Cancer Research, 2019, 25, 1063-1069. | 3.2 | 257 | | 59 | Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nature Cell Biology, 2019, 21, 1403-1412. | 4.6 | 254 | | 60 | PARP Inhibitor Activity Correlates with <i>SLFN11</i> Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer. Clinical Cancer Research, 2017, 23, 523-535. | 3.2 | 252 | | 61 | CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Frontiers in Oncology, 2020, 10, 1387. | 1.3 | 247 | | 62 | SCLC Subtypes Defined by ASCL1, NEUROD1, POU2F3, and YAP1: A Comprehensive Immunohistochemical and Histopathologic Characterization. Journal of Thoracic Oncology, 2020, 15, 1823-1835. | 0.5 | 234 | | 63 | Concurrent RB1 and TP53 Alterations Define aÂSubset of EGFR-Mutant Lung Cancers at risk forÂHistologic Transformation and Inferior Clinical Outcomes. Journal of Thoracic Oncology, 2019, 14, 1784-1793. | 0.5 | 232 | | 64 | Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell, 2022, 185, 563-575.e11. | 13.5 | 223 | | 65 | A Phase I Trial of Regional Mesothelin-Targeted CAR T-cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti–PD-1 Agent Pembrolizumab. Cancer Discovery, 2021, 11, 2748-2763. | 7.7 | 222 | | 66 | PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Annals of Oncology, 2018, 29, 2085-2091. | 0.6 | 221 | | 67 | Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature, 2020, 579, 284-290. | 13.7 | 213 | | 68 | Emergence of a High-Plasticity Cell State during Lung Cancer Evolution. Cancer Cell, 2020, 38, 229-246.e13. | 7.7 | 210 | | 69 | Pharmacogenomic and Pharmacokinetic Determinants of Erlotinib Toxicity. Journal of Clinical Oncology, 2008, 26, 1119-1127. | 0.8 | 207 | | 70 | Efficacy and Safety of Rovalpituzumab Tesirine in Third-Line and Beyond Patients with DLL3-Expressing, Relapsed/Refractory Small-Cell Lung Cancer: Results From the Phase II TRINITY Study. Clinical Cancer Research, 2019, 25, 6958-6966. | 3.2 | 206 | | 71 | The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924. | 3.2 | 200 | | 72 | Seneca Valley Virus, a Systemically Deliverable Oncolytic Picornavirus, and the Treatment of Neuroendocrine Cancers. Journal of the National Cancer Institute, 2007, 99, 1623-1633. | 3.0 | 196 | | # | Article | IF | CITATIONS | |----|--|--------------|-----------| | 73 | DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene, 2015, 34, 5869-5878. | 2.6 | 195 | | 74 | Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells.
Blood, 2009, 113, 2014-2021. | 0.6 | 189 | | 75 | Therapeutic Efficacy of ABT-737, a Selective Inhibitor of BCL-2, in Small Cell Lung Cancer. Cancer Research, 2008, 68, 2321-2328. | 0.4 | 187 | | 76 | Solid Predominant Histologic Subtype in Resected Stage I Lung Adenocarcinoma Is an Independent Predictor of Early, Extrathoracic, Multisite Recurrence and of Poor Postrecurrence Survival. Journal of Clinical Oncology, 2015, 33, 2877-2884. | 0.8 | 181 | | 77 | Small Cell Lung Cancer: Will Recent Progress Lead to Improved Outcomes?. Clinical Cancer Research, 2015, 21, 2244-2255. | 3.2 | 179 | | 78 | Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. Journal of the American Academy of Dermatology, 2015, 72, 1021-1026.e8. | 0.6 | 176 | | 79 | SMARCA4-Deficient Thoracic Sarcomatoid Tumors Represent Primarily Smoking-Related Undifferentiated Carcinomas Rather Than Primary Thoracic Sarcomas. Journal of Thoracic Oncology, 2020, 15, 231-247. | 0.5 | 172 | | 80 | Phase I Study of G3139, a bcl-2 Antisense Oligonucleotide, Combined With Carboplatin and Etoposide in Patients With Small-Cell Lung Cancer. Journal of Clinical Oncology, 2004, 22, 1110-1117. | 0.8 | 171 | | 81 | Signal transduction pathways that regulate cell survival and cell death. Oncogene, 1998, 17, 3207-3213. | 2.6 | 169 | | 82 | Surgical resection of limited disease small cell lung cancer in the new era of platinum chemotherapy: Its time has come. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 64-72. | 0.4 | 163 | | 83 | Randomized Phase II Study of Carboplatin and Etoposide With or Without the <i>bcl-2</i> Antisense Oligonucleotide Oblimersen for Extensive-Stage Small-Cell Lung Cancer: CALGB 30103. Journal of Clinical Oncology, 2008, 26, 870-876. | 0.8 | 158 | | 84 | Small Cell Lung Cancer: Can Recent Advances in Biology and Molecular Biology Be Translated into Improved Outcomes?. Journal of Thoracic Oncology, 2016, 11, 453-474. | 0.5 | 156 | | 85 | Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell, 2021, 39, 1479-1496.e18. | 7.7 | 155 | | 86 | P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Science Translational Medicine, 2016, 8, 345ra87. | 5 . 8 | 152 | | 87 | Response to ERBB3-Directed Targeted Therapy in <i>NRG1</i> -Rearranged Cancers. Cancer Discovery, 2018, 8, 686-695. | 7.7 | 149 | | 88 | HER2-Mediated Internalization of Cytotoxic Agents in <i>ERBB2</i> Amplified or Mutant Lung Cancers. Cancer Discovery, 2020, 10, 674-687. | 7.7 | 149 | | 89 | A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer. Annals of Oncology, 2002, 13, 539-545. | 0.6 | 148 | | 90 | Phase I Study of the Hedgehog Pathway Inhibitor IPI-926 in Adult Patients with Solid Tumors. Clinical Cancer Research, 2013, 19, 2766-2774. | 3.2 | 147 | | # | Article | IF | Citations | |-----|---|------|-----------| | 91 | ONECUT2 is a driver of neuroendocrine prostate cancer. Nature Communications, 2019, 10, 278. | 5.8 | 143 | | 92 | Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene, 2019, 38, 656-670. | 2.6 | 140 | | 93 | A Phase II Study of AT-101 (Gossypol) in Chemotherapy-Sensitive Recurrent Extensive-Stage Small Cell Lung Cancer. Journal of Thoracic Oncology, 2011, 6, 1757-1760. | 0.5 | 138 | | 94 | Lung Cancer in Never Smokers: Molecular Profiles and Therapeutic Implications. Clinical Cancer Research, 2009, 15, 5646-5661. | 3.2 | 137 | | 95 | An Attenuated Adenovirus, ONYX-015, As Mouthwash Therapy for Premalignant Oral Dysplasia. Journal of Clinical Oncology, 2003, 21, 4546-4552. | 0.8 | 135 | | 96 | Characteristics of Lung Cancers Harboring <i>NRAS</i> Mutations. Clinical Cancer Research, 2013, 19, 2584-2591. | 3.2 | 134 | | 97 | The Genomic Landscape of <i>SMARCA4</i> Alterations and Associations with Outcomes in Patients with Lung Cancer. Clinical Cancer Research, 2020, 26, 5701-5708. | 3.2 | 133 | | 98 | Itraconazole Inhibits Angiogenesis and Tumor Growth in Non–Small Cell Lung Cancer. Cancer Research, 2011, 71, 6764-6772. | 0.4 | 132 | | 99 | Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Science Signaling, 2019, 12, . | 1.6 | 130 | | 100 | Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance. Cancer Research, 2003, 63, 312-8. | 0.4 | 130 | | 101 | Phase I Clinical Study of Seneca Valley Virus (SVV-001),a Replication-Competent Picornavirus, in Advanced Solid Tumors with Neuroendocrine Features. Clinical Cancer Research, 2011, 17, 888-895. | 3.2 | 129 | | 102 | Transcriptional activation of short interspersed elements by DNA-damaging agents. Genes Chromosomes and Cancer, 2001, 30, 64-71. | 1.5 | 127 | | 103 | TMEM41B Is a Pan-flavivirus Host Factor. Cell, 2021, 184, 133-148.e20. | 13.5 | 127 | | 104 | Human Alu element retrotransposition induced by genotoxic stress. Nature Genetics, 2003, 35, 219-220. | 9.4 | 126 | | 105 | Phase 2 Study of Pemetrexed and Itraconazole as Second-Line Therapy for Metastatic Nonsquamous
Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, 619-623. | 0.5 | 119 | | 106 | Molecularly Targeted Therapies in Non–Small-Cell Lung
Cancer Annual Update 2014. Journal of Thoracic Oncology, 2015, 10, S1-S63. | 0.5 | 119 | | 107 | New Approaches to SCLC Therapy: From the Laboratory to the Clinic. Journal of Thoracic Oncology, 2020, 15, 520-540. | 0.5 | 119 | | 108 | Concurrent Mutations in STK11 and KEAP1 Promote Ferroptosis Protection and SCD1 Dependence in Lung Cancer. Cell Reports, 2020, 33, 108444. | 2.9 | 118 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 109 | Large Cell Neuroendocrine Carcinoma of the Lung: Clinico-Pathologic Features, Treatment, and Outcomes. Clinical Lung Cancer, 2016, 17, e121-e129. | 1.1 | 116 | | 110 | Ultra-deep next-generation sequencing of plasma cell-free DNA in patients with advanced lung cancers: results from the Actionable Genome Consortium. Annals of Oncology, 2019, 30, 597-603. | 0.6 | 114 | | 111 | Pharmacokinetics of Hedgehog Pathway Inhibitor Vismodegib (GDC-0449) in Patients with Locally Advanced or Metastatic Solid Tumors: the Role of Alpha-1-Acid Glycoprotein Binding. Clinical Cancer Research, 2011, 17, 2512-2520. | 3.2 | 112 | | 112 | Bcl-xL and Bcl-2 expression in squamous cell carcinoma of the head and neck. , 1999, 85, 164-170. | | 108 | | 113 | Selective Tropism of Seneca Valley Virus for Variant Subtype Small Cell Lung Cancer. Journal of the National Cancer Institute, 2013, 105, 1059-1065. | 3.0 | 106 | | 114 | Clinical Characteristics and Course of 63 Patients with BRAF Mutant Lung Cancers. Journal of Thoracic Oncology, 2014, 9, 1669-1674. | 0.5 | 106 | | 115 | Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection. Virology, 2003, 313, 147-157. | 1.1 | 103 | | 116 | A novel enhancer in the immunoglobulin lambda locus is duplicated and functionally independent of NF kappa B Genes and Development, 1990, 4, 978-992. | 2.7 | 102 | | 117 | A Prospective Study of Circulating Tumor DNA to Guide Matched Targeted Therapy in Lung Cancers. Journal of the National Cancer Institute, 2019, 111, 575-583. | 3.0 | 96 | | 118 | Delivery of a Liposomal c-raf-1 Antisense Oligonucleotide by Weekly Bolus Dosing in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2004, 10, 7244-7251. | 3.2 | 95 | | 119 | Vismodegib. Clinical Cancer Research, 2012, 18, 3218-3222. | 3.2 | 95 | | 120 | Peptide-based PET quantifies target engagement of PD-L1 therapeutics. Journal of Clinical Investigation, 2019, 129, 616-630. | 3.9 | 94 | | 121 | Molecular Characterization of Acquired Resistance to the BRAF Inhibitor Dabrafenib in a Patient with BRAF-Mutant Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, e41-e42. | 0.5 | 93 | | 122 | Tim-4+ cavity-resident macrophages impair anti-tumor CD8+ TÂcell immunity. Cancer Cell, 2021, 39, 973-988.e9. | 7.7 | 93 | | 123 | Activation of KRAS Mediates Resistance to Targeted Therapy in MET Exon 14–mutant Non–small Cell
Lung Cancer. Clinical Cancer Research, 2019, 25, 1248-1260. | 3.2 | 92 | | 124 | Noninvasive Interrogation of DLL3 Expression in Metastatic Small Cell Lung Cancer. Cancer Research, 2017, 77, 3931-3941. | 0.4 | 91 | | 125 | Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E748-57. | 3.3 | 90 | | 126 | Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies Clinical Cancer Research, 2006, 12, 1251-1259. | 3.2 | 88 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 127 | Twist1 Suppresses Senescence Programs and Thereby Accelerates and Maintains Mutant Kras-Induced Lung Tumorigenesis. PLoS Genetics, 2012, 8, e1002650. | 1.5 | 86 | | 128 | Age and sex differences in the incidence of esophageal adenocarcinoma: results from the Surveillance, Epidemiology, and End Results (SEER) Registry (1973-2008). Ecological Management and Restoration, 2014, 27, 757-763. | 0.2 | 86 | | 129 | Small-Cell Carcinomas of the Bladder and Lung Are Characterized by a Convergent but Distinct Pathogenesis. Clinical Cancer Research, 2018, 24, 1965-1973. | 3.2 | 85 | | 130 | A phase II study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in relapsed small cell lung cancer. Lung Cancer, 2011, 74, 481-485. | 0.9 | 84 | | 131 | Interim results of phase II study BRF113928 of dabrafenib in ⟨i⟩BRAF⟨ i⟩ V600E mutation–positive non-small cell lung cancer (NSCLC) patients Journal of Clinical Oncology, 2013, 31, 8009-8009. | 0.8 | 81 | | 132 | The Twist Box Domain Is Required for Twist1-induced Prostate Cancer Metastasis. Molecular Cancer Research, 2013, 11, 1387-1400. | 1.5 | 79 | | 133 | Akt up-regulation increases resistance to microtubule-directed chemotherapeutic agents through mammalian target of rapamycin. Molecular Cancer Therapeutics, 2004, 3, 1605-13. | 1.9 | 79 | | 134 | Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro-Oncology, 2015, 17, 545-554. | 0.6 | 78 | | 135 | Repurposing the Antihelmintic Mebendazole as a Hedgehog Inhibitor. Molecular Cancer Therapeutics, 2015, 14, 3-13. | 1.9 | 78 | | 136 | A Polymeric Nanoparticle Encapsulated Small-Molecule Inhibitor of Hedgehog Signaling (NanoHHI) Bypasses Secondary Mutational Resistance to Smoothened Antagonists. Molecular Cancer Therapeutics, 2012, 11, 165-173. | 1.9 | 77 | | 137 | Target engagement imaging of PARP inhibitors in small-cell lung cancer. Nature Communications, 2018, 9, 176. | 5.8 | 75 | | 138 | A randomized, phase 2 trial of docetaxel with or without PX-866, an irreversible oral phosphatidylinositol 3-kinase inhibitor, in patients with relapsed or metastatic head and neck squamous cell cancer. Oral Oncology, 2015, 51, 383-388. | 0.8 | 74 | | 139 | Circulating Tumor DNA Analysis to Assess Risk of Progression after Long-term Response to PD-(L)1 Blockade in NSCLC. Clinical Cancer Research, 2020, 26, 2849-2858. | 3.2 | 74 | | 140 | Crizotinib in the treatment of non-small-cell lung cancer. Expert Opinion on Pharmacotherapy, 2012, 13, 1195-1201. | 0.9 | 73 | | 141 | Immunophenotype and Response to Immunotherapy of <i>RET</i> Precision Oncology, 2019, 3, 1-8. | 1.5 | 73 | | 142 | ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer. Nature Cancer, 2021, 2, 503-514. | 5.7 | 72 | | 143 | Upregulation of <i>MMP-2</i> by HMGA1 Promotes Transformation in Undifferentiated, Large-Cell Lung Cancer. Molecular Cancer Research, 2009, 7, 1803-1812. | 1.5 | 71 | | 144 | Acquired BRAF Rearrangements Induce Secondary Resistance to EGFR therapy in EGFR-Mutated Lung Cancers. Journal of Thoracic Oncology, 2019, 14, 802-815. | 0.5 | 71 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 145 | A phase I study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in solid tumor malignancies. Cancer Chemotherapy and Pharmacology, 2010, 66, 1079-1085. | 1.1 | 69 | | 146 | Afatinib in patients with metastatic or recurrent HER2-mutant lung cancers: a retrospective international multicentre study. European Journal of Cancer, 2019, 109, 28-35. | 1.3 | 69 | | 147 | Enhanced specificity of clinical high-sensitivity tumor mutation profiling in cell-free DNA via paired normal sequencing using MSK-ACCESS. Nature Communications, 2021, 12, 3770. | 5.8 | 68 | | 148 | Multiomic Analysis of Lung Tumors Defines Pathways Activated in Neuroendocrine Transformation. Cancer Discovery, 2021, 11, 3028-3047. | 7.7 | 66 | | 149 | Treatment Outcomes and Clinical Characteristics of Patients with KRAS-G12C–Mutant Non–Small Cell Lung Cancer. Clinical Cancer Research, 2021, 27, 2209-2215. | 3.2 | 65 | | 150 | Targeted Therapies and Biomarkers in Small Cell Lung Cancer. Frontiers in Oncology, 2020, 10, 741. | 1.3 | 65 | | 151 | Phase I trial of Seneca Valley Virus (NTXâ€010) in children with relapsed/refractory solid tumors: A report of the Children's Oncology Group. Pediatric Blood and Cancer, 2015, 62, 743-750. | 0.8 | 63 | | 152 | Talazoparib Is a Potent Radiosensitizer in Small Cell Lung Cancer Cell Lines and Xenografts. Clinical Cancer Research, 2018, 24, 5143-5152. | 3.2 | 63 | | 153 | Inferring gene expression from cell-free DNA fragmentation profiles. Nature Biotechnology, 2022, 40, 585-597. | 9.4 | 63 | | 154 | A First-in-Class TWIST1 Inhibitor with Activity in Oncogene-Driven Lung Cancer. Molecular Cancer Research, 2017, 15, 1764-1776. | 1.5 | 61 | | 155 | Acquired <i>ALK</i> and <i>RET</i> Gene Fusions as Mechanisms of Resistance to Osimertinib in <i>EGFR</i> -Mutant Lung Cancers. JCO Precision Oncology, 2018, 2, 1-12. | 1.5 | 60 | | 156 | Bcl-x Complements Saccharomyces cerevisiae Genes That Facilitate the Switch from Glycolytic to Oxidative Metabolism. Journal of Biological Chemistry, 2002, 277, 44870-44876. | 1.6 | 59 | | 157 | Ultrasmall Core-Shell Silica Nanoparticles for Precision Drug Delivery in a High-Grade Malignant
Brain Tumor Model. Clinical Cancer Research, 2020, 26, 147-158. | 3.2 | 59 | | 158 | Epigenetic therapy in non-small-cell lung cancer: targeting DNA methyltransferases and histone deacetylases. Expert Opinion on Biological Therapy, 2013, 13, 1273-1285. |
1.4 | 58 | | 159 | Anthrax toxin receptor 1 is the cellular receptor for Seneca Valley virus. Journal of Clinical Investigation, $2017, 127, 2957-2967$. | 3.9 | 58 | | 160 | Stage IV lung carcinoids: spectrum and evolution of proliferation rate, focusing on variants with elevated proliferation indices. Modern Pathology, 2019, 32, 1106-1122. | 2.9 | 58 | | 161 | Targeting Aurora B kinase prevents and overcomes resistance to EGFR inhibitors in lung cancer by enhancing BIM- and PUMA-mediated apoptosis. Cancer Cell, 2021, 39, 1245-1261.e6. | 7.7 | 58 | | 162 | Vismodegib or cixutumumab in combination with standard chemotherapy for patients with extensiveâ€stage small cell lung cancer: A trial of the ECOGâ€ACRIN Cancer Research Group (E1508). Cancer, 2016, 122, 2371-2378. | 2.0 | 57 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 163 | A phase I trial of the Hedgehog inhibitor, sonidegib (LDE225), in combination with etoposide and cisplatin for the initial treatment of extensive stage small cell lung cancer. Lung Cancer, 2016, 99, 23-30. | 0.9 | 57 | | 164 | Management of small-cell lung cancer: incremental changes but hope for the future. Oncology, 2008, 22, 1486-92. | 0.4 | 56 | | 165 | Randomized Phase II Study of Pulse Erlotinib Before or After Carboplatin and Paclitaxel in Current or Former Smokers With Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2009, 27, 264-270. | 0.8 | 55 | | 166 | Spread Through Air Spaces (STAS) Is Prognostic in Atypical Carcinoid, Large Cell Neuroendocrine Carcinoma, and Small Cell Carcinoma of the Lung. Journal of Thoracic Oncology, 2019, 14, 1583-1593. | 0.5 | 55 | | 167 | Phase Ib study of the MEK inhibitor cobimetinib (GDC-0973) in combination with the PI3K inhibitor pictilisib (GDC-0941) in patients with advanced solid tumors. Investigational New Drugs, 2020, 38, 419-432. | 1.2 | 55 | | 168 | Inhibition of <i>TWIST1</i> Leads to Activation of Oncogene-Induced Senescence in Oncogene-Driven Nonâ€"Small Cell Lung Cancer. Molecular Cancer Research, 2013, 11, 329-338. | 1.5 | 54 | | 169 | A multicenter phase 1 study of PX-866 in combination with docetaxel in patients with advanced solid tumours. British Journal of Cancer, 2013, 109, 1085-1092. | 2.9 | 54 | | 170 | Genotoxic exposure is associated with alterations in glucose uptake and metabolism. Cancer Research, 2002, 62, 3515-20. | 0.4 | 54 | | 171 | Rapamycin Rescues ABT-737 Efficacy in Small Cell Lung Cancer. Cancer Research, 2014, 74, 2846-2856. | 0.4 | 52 | | 172 | A Hyperactive Signalosome in Acute Myeloid Leukemia Drives Addiction to a Tumor-Specific Hsp90 Species. Cell Reports, 2015, 13, 2159-2173. | 2.9 | 51 | | 173 | Frequency and outcomes of brain metastases in patients with <i>HER2</i> à€mutant lung cancers.
Cancer, 2019, 125, 4380-4387. | 2.0 | 51 | | 174 | Shining light on novel targets and therapies. Nature Reviews Clinical Oncology, 2017, 14, 75-76. | 12.5 | 50 | | 175 | Pulmonary large cell neuroendocrine carcinoma with adenocarcinoma-like features: napsin A expression and genomic alterations. Modern Pathology, 2018, 31, 111-121. | 2.9 | 50 | | 176 | Phase I/II Study of Pemetrexed With or Without ABT-751 in Advanced or Metastatic Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2011, 29, 1075-1082. | 0.8 | 49 | | 177 | Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis. PLoS ONE, 2016, 11, e0160587. | 1.1 | 49 | | 178 | Survival After Community Diagnosis of Early-stage Non-small Cell Lung Cancer. American Journal of Medicine, 2014, 127, 443-449. | 0.6 | 48 | | 179 | Phase I Dose-Escalation Study of Linsitinib (OSI-906) and Erlotinib in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2016, 22, 2897-2907. | 3.2 | 48 | | 180 | Discovery of IPN60090, a Clinical Stage Selective Glutaminase-1 (GLS-1) Inhibitor with Excellent Pharmacokinetic and Physicochemical Properties. Journal of Medicinal Chemistry, 2020, 63, 12957-12977. | 2.9 | 48 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 181 | <i>Smarca4</i> Inactivation Promotes Lineage-Specific Transformation and Early Metastatic Features in the Lung. Cancer Discovery, 2022, 12, 562-585. | 7.7 | 48 | | 182 | Inhibition of immunoglobulin gene rearrangement by the expression of a lambda 2 transgene Journal of Experimental Medicine, 1989, 169, 1911-1929. | 4.2 | 47 | | 183 | Itraconazole Side Chain Analogues: Structure–Activity Relationship Studies for Inhibition of Endothelial Cell Proliferation, Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, and Hedgehog Signaling. Journal of Medicinal Chemistry, 2011, 54, 7363-7374. | 2.9 | 45 | | 184 | A Randomized, Phase 2 Trial of Docetaxel with or without PX-866, an Irreversible Oral Phosphatidylinositol 3-Kinase Inhibitor, in Patients with Relapsed or Metastatic Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2014, 9, 1031-1035. | 0.5 | 44 | | 185 | Phase I clinical and pharmacokinetic study of protein kinase C-alpha antisense oligonucleotide ISIS 3521 administered in combination with 5-fluorouracil and leucovorin in patients with advanced cancer. Clinical Cancer Research, 2002, 8, 1042-8. | 3.2 | 44 | | 186 | Phase 1 study of twice weekly pulse dose and daily low-dose erlotinib as initial treatment for patients with EGFR-mutant lung cancers. Annals of Oncology, 2017, 28, 278-284. | 0.6 | 43 | | 187 | WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Reports, 2022, 39, 110814. | 2.9 | 43 | | 188 | Combination treatment with ABT-737 and chloroquine in preclinical models of small cell lung cancer. Molecular Cancer, 2013, 12, 16. | 7.9 | 42 | | 189 | Response to Standard Therapies and Comprehensive Genomic Analysis for Patients with Lung Adenocarcinoma with <i>EGFR</i> Exon 20 Insertions. Clinical Cancer Research, 2021, 27, 2920-2927. | 3.2 | 42 | | 190 | A phase II study of bryostatin-1 and paclitaxel in patients with advanced non-small cell lung cancer. Lung Cancer, 2003, 39, 191-196. | 0.9 | 40 | | 191 | A randomized, multicenter study to determine the safety and efficacy of the immunoconjugate SGN-15 plus docetaxel for the treatment of non-small cell lung carcinoma. Lung Cancer, 2006, 54, 69-77. | 0.9 | 40 | | 192 | $Poly(\hat{l}^2$ -amino ester) Nanoparticle Delivery of <i>TP53</i> Has Activity against Small Cell Lung Cancer <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2013, 12, 405-415. | 1.9 | 40 | | 193 | Medians and Milestones in Describing the Path to Cancer Cures. JAMA Oncology, 2016, 2, 167. | 3.4 | 40 | | 194 | Scientific Advances in Thoracic Oncology 2016. Journal of Thoracic Oncology, 2017, 12, 1183-1209. | 0.5 | 40 | | 195 | Clinical outcomes, local–regional control and the role for metastasis-directed therapies in stage III non-small cell lung cancers treated with chemoradiation and durvalumab. Radiotherapy and Oncology, 2020, 149, 205-211. | 0.3 | 39 | | 196 | Mobile Genetic Element Activation and Genotoxic Cancer Therapy. Molecular Diagnosis and Therapy, 2002, 2, 25-35. | 3.3 | 38 | | 197 | The Impact of Insurance on Access to Cancer Clinical Trials at a Comprehensive Cancer Center. Clinical Cancer Research, 2010, 16, 5997-6003. | 3.2 | 38 | | 198 | Notch Signaling Contributes to Lung Cancer Clonogenic Capacity <i>In Vitro</i> but May Be Circumvented in Tumorigenesis <i>In Vivo</i> Molecular Cancer Research, 2011, 9, 1746-1754. | 1.5 | 38 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 199 | Eosinophilic Fasciitis Following Checkpoint Inhibitor Therapy: Four Cases and a Review of Literature. Oncologist, 2020, 25, 140-149. | 1.9 | 38 | | 200 | Cell line dependence of Bcl-2-induced alteration of glutathione handling. Oncogene, 2000, 19, 472-476. | 2.6 | 37 | | 201 | Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers. International Journal of Radiation Oncology Biology Physics, 2013, 86, 143-149. | 0.4 | 37 | | 202 | Patterns of failure in limited-stage small cell lung cancer: Implications of TNM stage for prophylactic cranial irradiation. Radiotherapy and Oncology, 2017, 125, 130-135. | 0.3 | 37 | | 203 | Safety of retreatment with immunotherapy after immune-related toxicity in patients with lung cancers treated with anti-PD(L)-1 therapy Journal of Clinical Oncology, 2017, 35, 9012-9012. | 0.8 | 37 | | 204 | Factors influencing the utilization of prophylactic cranial irradiation in patients with limited-stage small cell lung cancer. Advances in Radiation Oncology, 2017, 2, 548-554. | 0.6 | 36 | | 205 | Acquired <i>MET</i> Exon 14 Alteration Drives Secondary Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in <i>EGFR</i> -Mutated Lung Cancer. JCO Precision Oncology, 2019, 3, 1-8. | 1.5 | 35 | | 206 | <i>MET</i> Exon 14–altered Lung Cancers and MET Inhibitor Resistance. Clinical Cancer Research, 2021, 27, 799-806. | 3.2 | 35 | | 207 | Atezolizumab for the treatment of non-small cell lung cancer. Expert Review of Clinical Pharmacology, 2017, 10, 935-945. | 1.3 | 34 | | 208 | Advances in Small-Cell Lung Cancer (SCLC) Translational Research. Cold Spring Harbor Perspectives in
Medicine, 2021, 11, a038240. | 2.9 | 34 | | 209 | Phase II study of PKC-α antisense oligonucleotide aprinocarsen in combination with gemcitabine and carboplatin in patients with advanced non-small cell lung cancer. Lung Cancer, 2006, 52, 173-180. | 0.9 | 33 | | 210 | Lung Cancer in Never Smokers: A Call to Action: Fig. 1 Clinical Cancer Research, 2009, 15, 5622-5625. | 3.2 | 33 | | 211 | ERK Phosphorylation Is Predictive of Resistance to IGF-1R Inhibition in Small Cell Lung Cancer.
Molecular Cancer Therapeutics, 2013, 12, 1131-1139. | 1.9 | 33 | | 212 | A Prospective Study of Tumor Suppressor Gene Methylation as a Prognostic Biomarker in Surgically Resected Stage I to IIIA Non–Small-Cell Lung Cancers. Journal of Thoracic Oncology, 2014, 9, 1272-1277. | 0.5 | 33 | | 213 | Systemic Therapy, Clinical Outcomes, and Overall Survival in Locally Advanced or Metastatic Pulmonary Carcinoid: A Brief Report. Journal of Thoracic Oncology, 2014, 9, 414-418. | 0.5 | 33 | | 214 | PD-L1 expression and response to immunotherapy in patients with <i>MET</i> exon 14-altered non-small cell lung cancers (NSCLC) Journal of Clinical Oncology, 2017, 35, 8512-8512. | 0.8 | 33 | | 215 | Bcl-xL and Akt cooperate to promote leukemogenesis in vivo. Oncogene, 2003, 22, 688-698. | 2.6 | 32 | | 216 | A phase II study of oxaliplatin and paclitaxel in patients with advanced non-small-cell lung cancer. Annals of Oncology, 2004, 15, 915-920. | 0.6 | 32 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 217 | Treatment of Small-Cell Lung Cancer: American Society of Clinical Oncology Endorsement of the American College of Chest Physicians Guideline. Journal of Oncology Practice, 2016, 12, 83-86. | 2.5 | 32 | | 218 | Combined Inhibition of NEDD8-Activating Enzyme and mTOR Suppresses ⟨i⟩NF2⟨/i⟩ Loss–Driven Tumorigenesis. Molecular Cancer Therapeutics, 2017, 16, 1693-1704. | 1.9 | 31 | | 219 | Protein-altering germline mutations implicate novel genes related to lung cancer development.
Nature Communications, 2020, 11, 2220. | 5.8 | 31 | | 220 | Targeting Lysine-Specific Demethylase 1 Rescues Major Histocompatibility Complex Class I Antigen Presentation and Overcomes Programmed Death-Ligand 1 Blockade Resistance in SCLC. Journal of Thoracic Oncology, 2022, 17, 1014-1031. | 0.5 | 31 | | 221 | Fast, hungry and unstable: finding the Achilles' heel of small-cell lung cancer. Trends in Molecular Medicine, 2007, 13, 150-157. | 3.5 | 29 | | 222 | Small Cell Lung Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2011, 9, 1086-1113. | 2.3 | 29 | | 223 | Frequent detection of infectious xenotropic murine leukemia virus (XMLV) in human cultures established from mouse xenografts. Cancer Biology and Therapy, 2011, 12, 617-628. | 1.5 | 29 | | 224 | Phase 2 Study of Erlotinib in Combination WithÂLinsitinib (OSI-906) or Placebo in Chemotherapy-Naive Patients With Non–Small-Cell Lung Cancer and Activating Epidermal Growth Factor Receptor Mutations. Clinical Lung Cancer, 2017, 18, 34-42.e2. | 1.1 | 29 | | 225 | POU2F3 in SCLC: Clinicopathologic and Genomic Analysis With a Focus on Its Diagnostic Utility in Neuroendocrine-Low SCLC. Journal of Thoracic Oncology, 2022, 17, 1109-1121. | 0.5 | 29 | | 226 | SOX2 expression is an early event in a murine model of EGFR mutant lung cancer and promotes proliferation of a subset of EGFR mutant lung adenocarcinoma cell lines. Lung Cancer, 2014, 85, 1-6. | 0.9 | 28 | | 227 | MA19.09 Concurrent Mutations in STK11 and KEAP1 is Associated with Resistance to PD-(L)1 Blockade in Patients with NSCLC Despite High TMB. Journal of Thoracic Oncology, 2018, 13, S424. | 0.5 | 28 | | 228 | Circulating Tumor DNA Profiling in Small-Cell Lung Cancer Identifies Potentially Targetable Alterations. Clinical Cancer Research, 2019, 25, 6119-6126. | 3.2 | 28 | | 229 | Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress inSaccharomyces cerevisiae. Yeast, 2005, 22, 641-652. | 0.8 | 27 | | 230 | Geographic Proximity and Racial Disparities in Cancer Clinical Trial Participation. Journal of the National Comprehensive Cancer Network: JNCCN, 2010, 8, 1343-1351. | 2.3 | 27 | | 231 | Evaluation of azacitidine and entinostat as sensitization agents to cytotoxic chemotherapy in preclinical models of non-small cell lung cancer. Oncotarget, 2015, 6, 56-70. | 0.8 | 27 | | 232 | Hedgehog Signaling Pathway Is Active in GBM with GLI1 mRNA Expression Showing a Single Continuous Distribution Rather than Discrete High/Low Clusters. PLoS ONE, 2015, 10, e0116390. | 1.1 | 27 | | 233 | Harnessing Clinical Sequencing Data for Survival Stratification of Patients With Metastatic Lung Adenocarcinomas. JCO Precision Oncology, 2019, 3, 1-9. | 1.5 | 26 | | 234 | Comprehensive molecular characterization of lung tumors implicates AKT and MYC signaling in adenocarcinoma to squamous cell transdifferentiation. Journal of Hematology and Oncology, 2021, 14, 170. | 6.9 | 26 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 235 | Lung Adenocarcinoma: Predictive Value of <i>KRAS </i> Mutation Status in Assessing Local Recurrence in Patients Undergoing Image-guided Ablation. Radiology, 2017, 282, 251-258. | 3.6 | 25 | | 236 | Direct genome editing of patient-derived xenografts using CRISPR-Cas9 enables rapid in vivo functional genomics. Nature Cancer, 2020, 1, 359-369. | 5.7 | 25 | | 237 | Rb Tumor Suppressor in Small Cell Lung Cancer: Combined Genomic and IHC Analysis with a Description of a Distinct Rb-Proficient Subset. Clinical Cancer Research, 2022, 28, 4702-4713. | 3.2 | 25 | | 238 | Characterization of a full-length infectious cDNA clone and a GFP reporter derivative of the oncolytic picornavirus SVV-001. Journal of General Virology, 2012, 93, 2606-2613. | 1.3 | 24 | | 239 | Combining the panâ€aurora kinase inhibitor AMG 900 with histone deacetylase inhibitors enhances antitumor activity in prostate cancer. Cancer Medicine, 2014, 3, 1322-1335. | 1.3 | 24 | | 240 | Inherited Rare, Deleterious Variants in ATM Increase Lung Adenocarcinoma Risk. Journal of Thoracic Oncology, 2020, 15, 1871-1879. | 0.5 | 24 | | 241 | <i>Rlf–Mycl</i> Gene Fusion Drives Tumorigenesis and Metastasis in a Mouse Model of Small Cell Lung Cancer. Cancer Discovery, 2021, 11, 3214-3229. | 7.7 | 24 | | 242 | Novel Systemic Therapies for Small Cell Lung Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2008, 6, 315-322. | 2.3 | 23 | | 243 | Phase II Trial of Temozolomide and Irinotecan as Second-Line Treatment for Advanced Non–small Cell
Lung Cancer. Journal of Thoracic Oncology, 2006, 1, 245-251. | 0.5 | 22 | | 244 | EA5142 adjuvant nivolumab in resected lung cancers (ANVIL) Journal of Clinical Oncology, 2018, 36, TPS8581-TPS8581. | 0.8 | 22 | | 245 | Utilization and factors precluding the initiation of consolidative durvalumab in unresectable stage III non-small cell lung cancer. Radiotherapy and Oncology, 2020, 144, 101-104. | 0.3 | 21 | | 246 | Molecular Engineering of Ultrasmall Silica Nanoparticle–Drug Conjugates as Lung Cancer Therapeutics. Clinical Cancer Research, 2020, 26, 5424-5437. | 3.2 | 21 | | 247 | Molecular Imaging of Neuroendocrine Prostate Cancer by Targeting Delta-Like Ligand 3. Journal of Nuclear Medicine, 2022, 63, 1401-1407. | 2.8 | 21 | | 248 | A phase I trial of the oral platinum analogue JM216 with concomitant radiotherapy in advanced malignancies of the chest. Investigational New Drugs, 2001, 19, 303-310. | 1.2 | 20 | | 249 | A phase II trial of 9-aminocaptothecin (9-AC) as a 120-h infusion in patients with non-small cell lung cancer. Investigational New Drugs, 2001, 19, 329-333. | 1.2 | 20 | | 250 | Capturing Genomic Evolution of Lung Cancers through Liquid Biopsy for Circulating Tumor DNA. Journal of Oncology, 2017, 2017, 1-5. | 0.6 | 20 | | 251 | <i>KRAS</i> G12C Mutation Is Associated with Increased Risk of Recurrence in Surgically Resected Lung Adenocarcinoma. Clinical Cancer Research, 2021, 27, 2604-2612. | 3.2 | 20 | | 252 | Dual Inhibition of the Epidermal Growth Factor Receptor Pathway with Cetuximab and Erlotinib: A Phase I Study in Patients with Advanced Solid Malignancies. Oncologist, 2009, 14, 119-124. | 1.9 | 19 | | # | Article | IF | CITATIONS | |-----|---|-----------------------|-------------------------| | 253 | A Self-Assembling and Disassembling (SADA) Bispecific Antibody (BsAb) Platform for Curative Two-step Pretargeted Radioimmunotherapy. Clinical Cancer Research, 2021, 27, 532-541. | 3.2 | 19 | | 254 | Radioimmunotherapy Targeting Delta-like Ligand 3 in Small Cell Lung Cancer Exhibits Antitumor Efficacy with Low Toxicity. Clinical Cancer Research, 2022, 28, 1391-1401. | 3.2 | 19 | | 255 | Mammalian Target of Rapamycin Promotes Vincristine Resistance through Multiple Mechanisms
Independent of Maintained Glycolytic Rate. Molecular Cancer Research, 2005, 3, 635-644. | 1.5 | 18 | | 256 | SVF1 Regulates Cell Survival by Affecting Sphingolipid Metabolism in Saccharomyces cerevisiae. Genetics, 2007, 175, 65-76. | 1.2 | 18 | | 257 | Inhibition of XPO1 Sensitizes Small Cell Lung Cancer to First- and Second-Line Chemotherapy. Cancer Research, 2022, 82, 472-483. | 0.4 | 18 | | 258 | Genomic and transcriptomic analysis of a library of small cell lung cancer patient-derived xenografts. Nature Communications, 2022, 13, 2144.
 5.8 | 18 | | 259 | Clinical utility of next-generation sequencing-based ctDNA testing for common and novel ALK fusions. Lung Cancer, 2021, 159, 66-73. | 0.9 | 17 | | 260 | Delta-like ligand 3–targeted radioimmunotherapy for neuroendocrine prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . | 3.3 | 17 | | 261 | Carboplatin plus vinorelbine with concomitant radiation therapy in advanced non-small cell lung cancer: a phase I study. Lung Cancer, 2002, 38, 65-71. | 0.9 | 16 | | 262 | A comparison of FLT to FDG PET/CT in the early assessment of chemotherapy response in stages IB–IIIA resectable NSCLC. EJNMMI Research, 2017, 7, 8. | 1.1 | 16 | | 263 | Ado-trastuzumab emtansine in patients with <i>HER2</i> mutant lung cancers: Results from a phase II basket trial Journal of Clinical Oncology, 2017, 35, 8510-8510. | 0.8 | 16 | | 264 | A Phase I Study of STEALTH® Cisplatin (SPI-77) and Vinorelbine in Patients with Advanced Non–Small-Cell Lung Cancer. Clinical Lung Cancer, 2000, 2, 128-132. | 1.1 | 15 | | 265 | Targeting Germline- and Tumor-Associated Nucleotide Excision Repair Defects in Cancer. Clinical Cancer Research, 2021, 27, 1997-2010. | 3.2 | 15 | | 266 | Three-arm randomized phase II study of cisplatin and etoposide (CE) versus CE with either vismodegib (V) or cixutumumab (Cx) for patients with extensive stage-small cell lung cancer (ES-SCLC) (ECOG) Tj ETQq0 0 C |) rg 6 .78/0ve | erl ae k 10 Tf 5 | | 267 | Phase II study of cabozantinib for patients with advanced <i>RET</i> -rearranged lung cancers Journal of Clinical Oncology, 2015, 33, 8007-8007. | 0.8 | 15 | | 268 | <i>MDM2</i> amplification (Amp) to mediate cabozantinib resistance in patients (Pts) with advanced <i>RET</i> rearranged lung cancers Journal of Clinical Oncology, 2016, 34, 9068-9068. | 0.8 | 15 | | 269 | STK11/LKB1 co-mutations to predict for de novo resistance to PD-1/PD-L1 axis blockade in KRAS-mutant lung adenocarcinoma Journal of Clinical Oncology, 2017, 35, 9016-9016. | 0.8 | 15 | | 270 | Systemic and Oligo-Acquired Resistance to PD-(L)1 Blockade in Lung Cancer. Clinical Cancer Research, 2022, 28, 3797-3803. | 3.2 | 15 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 271 | DNA cleavage and Trp53 differentially affect SINE transcription. Genes Chromosomes and Cancer, 2007, 46, 248-260. | 1.5 | 14 | | 272 | ORALO2.01: Safety and Efficacy of Single-Agent Rovalpituzumab Tesirine, a DLL3-Targeted ADC, in Recurrent orÂRefractory SCLC. Journal of Thoracic Oncology, 2016, 11, S252-S253. | 0.5 | 14 | | 273 | Positron-Emission Tomographic Imaging of a Fluorine 18–Radiolabeled Poly(ADP-Ribose) Polymerase 1 Inhibitor Monitors the Therapeutic Efficacy of Talazoparib in SCLC Patient–Derived Xenografts. Journal of Thoracic Oncology, 2019, 14, 1743-1752. | 0.5 | 14 | | 274 | CNS Metastases in Patients With MET Exon 14–Altered Lung Cancers and Outcomes With Crizotinib. JCO Precision Oncology, 2020, 4, 871-876. | 1.5 | 14 | | 275 | A multi-center, randomized, double-blind phase II study comparing temozolomide (TMZ) plus either veliparib (ABT-888), a PARP inhibitor, or placebo as 2 nd or 3 rd -line therapy for patients (Pts) with relapsed small cell lung cancers (SCLCs) Journal of Clinical Oncology, 2016, 34, 8512-8512. | 0.8 | 14 | | 276 | Afatinib in patients with metastatic <i>HER2</i> -mutant lung cancers: An international multicenter study Journal of Clinical Oncology, 2017, 35, 9071-9071. | 0.8 | 14 | | 277 | PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry. Cancer Discovery, 2022, 12, 2120-2139. | 7.7 | 14 | | 278 | Beyond the Scalpel: Targeting Hedgehog in Skin Cancer Prevention. Cancer Prevention Research, 2010, 3, 1-3. | 0.7 | 13 | | 279 | Quantitative <i>In Vivo</i> Analyses Reveal a Complex Pharmacogenomic Landscape in Lung Adenocarcinoma. Cancer Research, 2021, 81, 4570-4580. | 0.4 | 13 | | 280 | Abstract CT115: Phase 1b <i>KEYNOTE 200 (STORM study):</i> A study of an intravenously delivered oncolytic virus, Coxsackievirus A21 in combination with pembrolizumab in advanced cancer patients. Cancer Research, 2017, 77, CT115-CT115. | 0.4 | 13 | | 281 | Safety and efficacy of single-agent rovalpituzumab tesirine (SC16LD6.5), a delta-like protein 3 (DLL3)-targeted antibody-drug conjugate (ADC) in recurrent or refractory small cell lung cancer (SCLC) Journal of Clinical Oncology, 2016, 34, LBA8505-LBA8505. | 0.8 | 13 | | 282 | MAPK pathway activation selectively inhibits ASCL1-driven small cell lung cancer. IScience, 2021, 24, 103224. | 1.9 | 13 | | 283 | P3.02c-046 Safety, Clinical Activity and Biomarker Results from a Phase Ib Study of Erlotinib plus
Atezolizumab in Advanced NSCLC. Journal of Thoracic Oncology, 2017, 12, S1302-S1303. | 0.5 | 12 | | 284 | MA11.07 Improved Small Cell Lung Cancer (SCLC) Response Rates with Veliparib and Temozolomide: Results from a Phase II Trial. Journal of Thoracic Oncology, 2017, 12, S406-S407. | 0.5 | 12 | | 285 | Role of mTOR As an Essential Kinase in SCLC. Journal of Thoracic Oncology, 2020, 15, 1522-1534. | 0.5 | 12 | | 286 | SC-002 in patients with relapsed or refractory small cell lung cancer and large cell neuroendocrine carcinoma: Phase 1 study. Lung Cancer, 2020, 145, 126-131. | 0.9 | 12 | | 287 | Keynote-200 phase 1b: A novel combination study of intravenously delivered coxsackievirus A21 and pembrolizumab in advanced cancer patients Journal of Clinical Oncology, 2017, 35, TPS3108-TPS3108. | 0.8 | 12 | | 288 | A Phase II Tolerability Study of Cisplatin Plus Docetaxel as Adjuvant Chemotherapy for Resected Non-small Cell Lung Cancer. Journal of Thoracic Oncology, 2007, 2, 638-644. | 0.5 | 11 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 289 | RET Mutations in Neuroendocrine Tumors: Including Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2014, 9, 1240-1242. | 0.5 | 11 | | 290 | MYC, MAX, and Small Cell Lung Cancer. Cancer Discovery, 2014, 4, 273-274. | 7.7 | 11 | | 291 | The addition of anti-angiogenic tyrosine kinase inhibitors to chemotherapy for patients with advanced non-small-cell lung cancers: A meta-analysis of randomized trials. Lung Cancer, 2016, 102, 21-27. | 0.9 | 11 | | 292 | Liquid biopsy for ctDNA to revolutionize the care of patients with early stage lung cancers. Annals of Translational Medicine, 2017, 5, 479-479. | 0.7 | 11 | | 293 | Ultrasmall Nanoparticle Delivery of Doxorubicin Improves Therapeutic Index for High-Grade Glioma.
Clinical Cancer Research, 2022, 28, 2938-2952. | 3.2 | 11 | | 294 | Lessons learned from routine, targeted assessment of liquid biopsies for <i>EGFR</i> T790M resistance mutation in patients with <i>EGFR</i> mutant lung cancers. Acta Oncológica, 2019, 58, 1634-1639. | 0.8 | 10 | | 295 | A Call to Action: Dismantling Racial Injustices in Preclinical Research and Clinical Care of Black Patients Living with Small Cell Lung Cancer. Cancer Discovery, 2021, 11, 240-244. | 7.7 | 10 | | 296 | A CRISPR Activation Screen Identifies an Atypical Rho GTPase That Enhances Zika Viral Entry. Viruses, 2021, 13, 2113. | 1.5 | 10 | | 297 | Germline Pathogenic Variants Impact Clinicopathology of Advanced Lung Cancer. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1450-1459. | 1.1 | 10 | | 298 | Apoptotic signaling in lymphocytes. Current Opinion in Hematology, 1996, 3, 35-40. | 1.2 | 9 | | 299 | Missing the mark in <i>FGFR1</i> â€amplified squamous cell cancer of the lung. Cancer, 2016, 122, 2938-2940. | 2.0 | 8 | | 300 | Concurrent Targeting of Potential Cancer Stem Cells Regulating Pathways Sensitizes Lung Adenocarcinoma to Standard Chemotherapy. Molecular Cancer Therapeutics, 2020, 19, 2175-2185. | 1.9 | 8 | | 301 | A Phase II Trial of Albumin-Bound Paclitaxel and Gemcitabine in Patients with Newly Diagnosed Stage IV Squamous Cell Lung Cancers. Clinical Cancer Research, 2020, 26, 1796-1802. | 3.2 | 8 | | 302 | Abstract LB-138: Efficacy data of GDC-0449, a systemic Hedgehog pathway antagonist, in a first-in-human, first-in-class Phase I study with locally advanced, multifocal or metastatic basal cell carcinoma patients. Cancer Research, 2008, 68, LB-138-LB-138. | 0.4 | 8 | | 303 | Aberrant Epigenetic Regulation: A Central Contributor to Lung Carcinogenesis and a New Therapeutic Target. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, 33, e295-e300. | 1.8 | 8 | | 304 | Immune biomarkers and response to checkpoint inhibition of BRAFV600 and BRAF non-V600 altered lung cancers. British Journal of Cancer, 2022, 126, 889-898. | 2.9 | 8 | | 305 | Seneca Valley Virus 3Cpro Substrate Optimization Yields Efficient Substrates for Use in Peptide-Prodrug Therapy. PLoS ONE, 2015, 10, e0129103. | 1.1 | 7 | | 306 | Synthesis and Comparative <i>In Vivo</i> Evaluation of Site-Specifically Labeled Radioimmunoconjugates for DLL3-Targeted ImmunoPET. Bioconjugate Chemistry, 2021, 32, 1255-1262. | 1.8 | 7 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 307 | Response to crizotinib and cabozantinib in stage IV lung
adenocarcinoma patients with mutations that cause MET exon 14 skipping Journal of Clinical Oncology, 2015, 33, 8021-8021. | 0.8 | 7 | | 308 | EA5142 adjuvant nivolumab in resected lung cancers (ANVIL): The newest study in the ALCHEMIST platform Journal of Clinical Oncology, 2017, 35, TPS8575-TPS8575. | 0.8 | 7 | | 309 | Phase I Study of Induction Chemotherapy and Concomitant Chemoradiotherapy with Irinotecan, Carboplatin, and Paclitaxel for Stage III Non-small Cell Lung Cancer. Journal of Thoracic Oncology, 2008, 3, 59-67. | 0.5 | 6 | | 310 | Novel Therapeutic Approaches for Small Cell Lung Cancer: The Future has Arrived. Current Problems in Cancer, 2012, 36, 156-173. | 1.0 | 6 | | 311 | Prospective Molecular Evaluation of Small Cell Lung Cancer (Sclc) Utilizing the Comprehensive Mutation Analysis Program (Map) at Memorial Sloan Kettering Cancer Center (Mskcc). Annals of Oncology, 2014, 25, iv511. | 0.6 | 6 | | 312 | KEYNOTE-604: Phase 3 trial of pembrolizumab plus etoposide/platinum (EP) for first-line treatment of extensive stage small-cell lung cancer (ES-SCLC). Annals of Oncology, 2017, 28, v541. | 0.6 | 6 | | 313 | N-Linked Glycosylation on Anthrax Toxin Receptor 1 Is Essential for Seneca Valley Virus Infection. Viruses, 2021, 13, 769. | 1.5 | 6 | | 314 | Protein neddylation as a therapeutic target in pulmonary and extrapulmonary small cell carcinomas. Genes and Development, 2021, 35, 870-887. | 2.7 | 6 | | 315 | A phase I study of twice weekly pulse dose and daily low dose erlotinib as initial treatment for patients (pts) with EGFR-mutant lung cancers Journal of Clinical Oncology, 2015, 33, 8017-8017. | 0.8 | 6 | | 316 | Updated results of phase 1b study of tarextumab (TRXT, anti-Notch2/3) in combination with etoposide and platinum (EP) in patients (pts) with untreated extensive-stage small-cell lung cancer (ED-SCLC) Journal of Clinical Oncology, 2016, 34, 8564-8564. | 0.8 | 6 | | 317 | Skin Deep and Deeper: Multiple Pathways in Basal Cell Carcinogenesis. Cancer Prevention Research, 2010, 3, 1213-1216. | 0.7 | 5 | | 318 | Small-cell lung cancer in the era of immunotherapy. Translational Lung Cancer Research, 2017, 6, S67-S70. | 1.3 | 5 | | 319 | Epigenetic targeting of DNA repair in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22429-22431. | 3.3 | 5 | | 320 | What Keeps a Resting T Cell Alive?. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 383-388. | 2.0 | 5 | | 321 | Selpercatinib-Induced Hypothyroidism Through Off-Target Inhibition of Type 2 lodothyronine Deiodinase. JCO Precision Oncology, 2022, , . | 1.5 | 5 | | 322 | PX-866 and docetaxel in patients with advanced solid tumors Journal of Clinical Oncology, 2012, 30, 3024-3024. | 0.8 | 4 | | 323 | Phase I trial of the hedgehog (Hh) inhibitor, LDE225, in combination with etoposide and cisplatin (EP) for initial treatment of extensive stage small cell lung cancer (ES-SCLC) Journal of Clinical Oncology, 2014, 32, 7602-7602. | 0.8 | 4 | | 324 | Vismodegib in the treatment of patients with metastatic basal cell carcinoma (mBCC) and distant metastases: Survival in the pivotal phase II and phase I studies Journal of Clinical Oncology, 2014, 32, 9012-9012. | 0.8 | 4 | | # | Article | IF | Citations | |-----|--|------|-----------| | 325 | Molecular determinants of response and resistance to anti-PD-(L)1 blockade in patients with NSCLC profiled with targeted next-generation sequencing (NGS) Journal of Clinical Oncology, 2017, 35, 9015-9015. | 0.8 | 4 | | 326 | Phase 1 Clinical Trial of Trametinib and Ponatinib in Patients With NSCLC Harboring KRAS Mutations. JTO Clinical and Research Reports, 2022, 3, 100256. | 0.6 | 4 | | 327 | Esophageal cancer gender disparity Journal of Clinical Oncology, 2012, 30, 47-47. | 0.8 | 3 | | 328 | Rationale and Design of the Phase 3 KEYLYNK-013 Study of Pembrolizumab With Concurrent Chemoradiotherapy Followed by Pembrolizumab With or Without Olaparib for Limited-Stage Small-Cell Lung Cancer. Clinical Lung Cancer, 2022, 23, e325-e329. | 1.1 | 3 | | 329 | Phase I Study of Dose-Dense Alternating Doublets in Advanced Nonâ€"Small-Cell Lung Cancer. Clinical Lung Cancer, 2002, 3, 265-270. | 1.1 | 2 | | 330 | Histone Code Aberrancies in Small Cell Lung Cancer. Journal of Thoracic Oncology, 2017, 12, 599-601. | 0.5 | 2 | | 331 | Ribociclib and everolimus in well-differentiated foregut neuroendocrine tumors. Endocrine-Related Cancer, 2021, 28, 237-246. | 1.6 | 2 | | 332 | An optimized NGS sample preparation protocol for inÂvitro CRISPR screens. STAR Protocols, 2021, 2, 100390. | 0.5 | 2 | | 333 | Transcriptional activation of short interspersed elements by DNA-damaging agents. , 2001, 30, 64. | | 2 | | 334 | Transcriptional activation of short interspersed elements by DNAâ€damaging agents. Genes Chromosomes and Cancer, 2001, 30, 64-71. | 1.5 | 2 | | 335 | Abstract 2557: Preclinical synergy of Plk1 inhibitors and HDACIs. Cancer Research, 2011, 71, 2557-2557. | 0.4 | 2 | | 336 | Therapeutic potential of Hedgehog signaling inhibitors in cancer: rationale and clinical data. Clinical Investigation, 2012, 2, 371-385. | 0.0 | 1 | | 337 | PS01.24: Clinical Outcomes of Patients with Pulmonary Large Cell Neuroendocrine Carcinoma Characterized by Next-Generation Sequencing. Journal of Thoracic Oncology, 2016, 11, S283. | 0.5 | 1 | | 338 | Preclinical oncology â€" reporting transparency needed. Nature Reviews Clinical Oncology, 2016, 13, 8-9. | 12.5 | 1 | | 339 | OA05.03 Single-Agent Rovalpituzumab Tesirine, aÂDelta-Like Protein 3 (DLL3)-Targeted Antibody-Drug
Conjugate (ADC), in Small-Cell Lung Cancer (SCLC). Journal of Thoracic Oncology, 2017, 12, S260-S261. | 0.5 | 1 | | 340 | Co-targeting TGF- \hat{l}^2 and PD-L1 with radiation therapy: The Goldilocks principle. Cell Reports Medicine, 2021, 2, 100406. | 3.3 | 1 | | 341 | Abstract A12: Screening for TWIST1 inhibitors as a novel therapy for oncogene-driven lung cancer Clinical Cancer Research, 2014, 20, A12-A12. | 3.2 | 1 | | 342 | Abstract IA03: Genomic and epigenomic targets in small cell lung cancer Clinical Cancer Research, 2014, 20, IA03-IA03. | 3.2 | 1 | | # | Article | ΙF | Citations | |-----|--|-----|-----------| | 343 | Abstract 4619: Epigenetic therapy and sensitization of lung cancer to immunotherapy , 2013, , . | | 1 | | 344 | Stage IV large cell neuroendocrine carcinoma (LCNEC) of the lung: Clinicopathologic features, treatment, and survival Journal of Clinical Oncology, 2014, 32, e19046-e19046. | 0.8 | 1 | | 345 | Abstract 5209: The roles of Notch signaling in the development of non-small cell lung cancer., 2011,,. | | 1 | | 346 | Esophageal cancer incidence gender disparity Journal of Clinical Oncology, 2012, 30, 1573-1573. | 0.8 | 1 | | 347 | Aberrant Epigenetic Regulation: A Central Contributor to Lung Carcinogenesis and a New Therapeutic Target. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, , e295-e300. | 1.8 | 1 | | 348 | Prospective molecular analysis of small cell lung cancer (SCLC) using next generation sequencing (NGS) Journal of Clinical Oncology, 2015, 33, 7518-7518. | 0.8 | 1 | | 349 | Abstract 3752: Integrating proteomics and metabolomics characterizes active pathways and potential drug targets in small cell lung cancer. , 2015, , . | | 1 | | 350 | Abstract 4187: Loss of SLFN11 or gain of TWIST1 promote chemotherapy resistance in small cell lung cancer. , $2016, , .$ | | 1 | | 351 | Abstract 6238: Profiling of the circulating cell-free DNA methylome for detection and subtyping of small cell lung cancers. Cancer Research, 2022, 82, 6238-6238. | 0.4 | 1 | | 352 | P2-175: Phase $1/2$ trial of ABT-751 in combination with pemetrexed vs pemetrexed alone in subjects with advanced or metastatic non-small-cell lung cancer (NSCLC). Journal of Thoracic Oncology, 2007, 2, S639. | 0.5 | 0 | | 353 | SLFN11 Is Necessary for Single Agent Sensitivity to Talazoparib, a Potent PARP Inhibitor, But Not for Radiosensitization in Small Cell Lung Cancer (SCLC) Cell Lines and Patient-Derived Xenografts (PDX). International Journal of Radiation Oncology Biology Physics, 2016, 96, S75. | 0.4 | 0 | | 354 | P1.01-76 A Phase II Trial of Albumin-Bound Paclitaxel and Gemcitabine in Patients with Newly Diagnosed Stage IV Squamous Cell Lung Cancers. Journal of Thoracic Oncology, 2018, 13, S492. | 0.5 | 0 | | 355 | MA22.01 PARP Inhibitor Radiosensitization of Small Cell Lung Cancer Differs by PARP Trapping Potency. Journal of Thoracic Oncology, 2018, 13, S433. | 0.5 | 0 | | 356 | Analyzing the Thin Tail: Searching for Biomarkers of Exceptional Survival in SCLC. Journal of Thoracic Oncology, 2019, 14, 1122-1124. | 0.5 | 0 | | 357 | Abstract LB186: MAPK pathway activation represents a therapeutic vulnerability inASCL1-driven SCLC., 2021,,. | | 0 | | 358 | Abstract 3738: Exploratory patient (pt) stratification markers associated with sensitivity to ABT-263 in small cell lung cancer (SCLC)., 2010,,. | | 0 | | 359 | Determinants of Apoptotic Sensitivity to HSP90 Inhibition In Acute Myeloid Leukemia. Blood, 2010, 116, 2159-2159. | 0.6 | 0 | | 360 | Abstract 3271: Inhibition of angiogenesis and tumor growth by itraconazole in primary xenograft models of human non-small cell lung cancer. , 2011, , . | | 0 | | # | Article | IF | CITATIONS | |-----
--|-----|-----------| | 361 | Abstract 4292: Frequent detection of xenotropic murine leukemia virus (XMLV) strains including XMRV in human cultures established from mouse xenografts. , 2011, , . | | O | | 362 | Abstract LB-411: A phase II study of combination epigenetic therapy in advanced non-small cell lung cancer. , $2011, , .$ | | 0 | | 363 | Abstract 1802: IGF-1R inhibition as a novel therapeutic strategy for small cell lung cancer. , 2012, , . | | 0 | | 364 | Abstract 2954: TWIST1 is a critical mediator of KRAS mutant tumorigenesis in human non-small cell lung cancer. , 2012 , , . | | 0 | | 365 | Abstract 2049: Preclinical profile of AMG900 in combination with HDACIs in prostate cancer., 2012,,. | | 0 | | 366 | Abstract B45: The Twist box domain is required for Twist1-induced metastasis of prostate cancer cells. , $2013, , .$ | | 0 | | 367 | Abstract 5644: Itraconazole and arsenic trioxide inhibit hedgehog pathway activation and tumor growth associated with acquired resistance to vismodegib, 2013, , . | | 0 | | 368 | Abstract 5675: Optimization of a Seneca Valley Virus (SVV) 3C protease substrate for virus-directed enzyme prodrug therapy , 2013, , . | | 0 | | 369 | Abstract 4771: Identification of inhibitors of TWIST1 as a treatment for lung cancer. , 2014, , . | | 0 | | 370 | Abstract 3405: E12 and E47 are essential for TWIST1 dependent suppression of oncogene-induced senescence in NSCLC. , 2014, , . | | 0 | | 371 | Abstract LB-239: The Hippo effector YAP promotes resistance to RAF and MEK targeted therapies. , 2015, , . | | 0 | | 372 | Abstract LB-286: The patient-derived xenograft mouse model dilemma; a new solution for an old problem. , 2015, , . | | 0 | | 373 | Abstract 610: Prospective genomic characterization of small cell lung cancer by targeted next generation sequencing. , 2015, , . | | 0 | | 374 | A phase I trial of certolizumab plus chemotherapy in patients with stage IV lung adenocarcinomas Journal of Clinical Oncology, 2016, 34, 9080-9080. | 0.8 | 0 | | 375 | Next generation sequencing (NGS) in lung adenocarcinoma (LA) as a guide to treatment selection
Journal of Clinical Oncology, 2016, 34, 9084-9084. | 0.8 | 0 | | 376 | Next generation sequencing (NGS) in resectable non-small cell lung cancer (NSCLC): Therapeutic implications Journal of Clinical Oncology, 2016, 34, 8541-8541. | 0.8 | 0 | | 377 | Abstract 3756: PARP inhibitor sensitivity in small cell lung cancer cell lines and patient-derived xenografts correlates with SLFN11 expression but not with structural homologous recombination deficiency. , 2016, , . | | 0 | | 378 | Abstract 4356: Identification of the anthrax toxin receptor (ANTXR1) as the high affinity cellular receptor for Seneca Valley Virus (SVV)., 2016,,. | | 0 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 379 | Lung cancers with mutations in <i>EGFR</i> exon 18: Molecular characterization and clinical outcomes in response to tyrosine kinase inhibitors Journal of Clinical Oncology, 2017, 35, 9029-9029. | 0.8 | 0 | | 380 | Liquid biopsy in the clinic: A prospective study of plasma circulating tumor DNA (ctDNA) next generation sequencing (NGS) in patients with advanced non-small cell lung cancers to match targeted therapy Journal of Clinical Oncology, 2017, 35, 11536-11536. | 0.8 | 0 | | 381 | In vitro functional analysis of HER2 variants in lung cancers to evaluate their oncogenic activity and predict clinical response to HER2 targeted therapies Journal of Clinical Oncology, 2017, 35, e23150-e23150. | 0.8 | 0 | | 382 | Abstract 1727: Circulating Tumor Cells (CTCs) in patients with extensive stage small cell lung cancer and their association with clinical outcome. , 2017 , , . | | 0 | | 383 | Youth has no age: cancer treatment for older Americans. Oncology, 2010, 24, 1114, 1118, 1120. | 0.4 | 0 |