Liang Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/977336/publications.pdf

Version: 2024-02-01

206112 159585 2,470 66 30 48 h-index citations g-index papers 67 67 67 3659 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Self-Driven Broadband Photodetectors Based on MoSe ₂ /FePS ₃ van der Waals n–p Type-II Heterostructures. ACS Applied Materials & Interfaces, 2022, 14, 11927-11936.	8.0	35
2	Electronic structure, magnetic properties and magnetocaloric performance in rare earths (RE) based RE2BaZnO5 (REÂ=ÂGd, Dy, Ho, and Er) compounds. Acta Materialia, 2022, 236, 118114.	7.9	68
3	Excellent magnetocaloric performance in the carbide compounds RE2Cr2C3 (RE = Er, Ho, and Dy) and their composites. Materials Today Physics, 2022, 27, 100786.	6.0	35
4	Two-dimensional magneto-photoconductivity in non-van der Waals manganese selenide. Materials Horizons, 2021, 8, 1286-1296.	12.2	43
5	Ferromagnetism in two-dimensional black phosphorus induced by phthalocyanine cobalt. Journal of Materials Science, 2021, 56, 13568-13578.	3.7	5
6	Enhanced Trion Emission in Monolayer MoSe ₂ by Constructing a Type†Van Der Waals Heterostructure. Advanced Functional Materials, 2021, 31, 2104960.	14.9	21
7	Polymer-buried van der Waals magnets for promising wearable room-temperature spintronics. Materials Horizons, 2021, 8, 3306-3314.	12.2	33
8	Thiolâ€Assisted Synthesis of Carbonâ€Supported Metal Nanoparticles for Efficient Electrocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2020, 15, 2153-2159.	3.3	8
9	Phase-transition-induced superior ultraviolet photodetection of a ZnO/VO ₂ bilayer. Journal of Materials Chemistry C, 2020, 8, 11399-11406.	5.5	14
10	A Fluorescence Probe for Metal Ions Based on Black Phosphorus Quantum Dots. Advanced Materials Interfaces, 2020, 7, 1902075.	3.7	17
11	Direct bandgap opening in sodium-doped antimonene quantum dots: an emerging 2D semiconductor. Materials Horizons, 2020, 7, 1588-1596.	12.2	19
12	Self-powered ultraviolet photodetector based on CuGaO/ZnSO heterojunction. Journal of Materials Science, 2020, 55, 9003-9013.	3.7	8
13	Artificial synapses emulated through a light mediated organic–inorganic hybrid transistor. Journal of Materials Chemistry C, 2019, 7, 48-59.	5.5	70
14	Robust Aboveâ€Roomâ€Temperature Ferromagnetism in Fewâ€Layer Antimonene Triggered by Nonmagnetic Adatoms. Advanced Functional Materials, 2019, 29, 1808746.	14.9	38
15	Multifunctional Zn–Al layered double hydroxides for surface-enhanced Raman scattering and surface-enhanced infrared absorption. Dalton Transactions, 2019, 48, 426-434.	3.3	17
16	Defect Reconstruction Triggered Full-Color Photodetection in Single Nanowire Phototransistor. ACS Photonics, 2019, 6, 886-894.	6.6	37
17	Concurrent Improvement of Photocarrier Separation and Extraction in ZnO Nanocrystal Ultraviolet Photodetectors. Journal of Physical Chemistry C, 2019, 123, 14766-14773.	3.1	21
18	2D Ferromagnetism: Robust Aboveâ€Roomâ€Temperature Ferromagnetism in Fewâ€Layer Antimonene Triggered by Nonmagnetic Adatoms (Adv. Funct. Mater. 15/2019). Advanced Functional Materials, 2019, 29, 1970099.	14.9	1

#	Article	IF	CITATIONS
19	Bio-inspired carbon doped graphitic carbon nitride with booming photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 61-71.	20.2	79
20	Hydrogen bonds in heterojunction photocatalysts for efficient charge transfer. Applied Catalysis B: Environmental, 2018, 234, 198-205.	20.2	43
21	Core–shell structured dendritic CuO@TiO2 for high-k P(VDF-HFP) composites with suppressed dielectric loss and enhanced thermal conductivity. Journal of Materials Science: Materials in Electronics, 2018, 29, 1269-1279.	2.2	5
22	Insights into in situ one-step synthesis of carbon-supported nano-particulate gold-based catalysts for efficient electrocatalytic CO2 reduction. Journal of Materials Chemistry A, 2018, 6, 23610-23620.	10.3	20
23	Co3O4/Ni-based MOFs on carbon cloth for flexible alkaline battery-supercapacitor hybrid devices and near-infrared photocatalytic hydrogen evolution. Electrochimica Acta, 2018, 281, 189-197.	5.2	66
24	Charge Transfer Doping Modulated Raman Scattering and Enhanced Stability of Black Phosphorus Quantum Dots on a ZnO Nanorod. Advanced Optical Materials, 2018, 6, 1800440.	7.3	34
25	Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanoparticles: synergies of defects and plasmons: publisher's note. Optics Letters, 2018, 43, 2627.	3.3	0
26	Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanoparticles: synergies of defects and plasmons. Optics Letters, 2018, 43, 2244.	3.3	13
27	Phosphorene nano-heterostructure based memristors with broadband response synaptic plasticity. Journal of Materials Chemistry C, 2018, 6, 9383-9393.	5.5	60
28	Black phosphorus: an efficient co-catalyst for charge separation and enhanced photocatalytic hydrogen evolution. Journal of Materials Science, 2018, 53, 16557-16566.	3.7	43
29	Phosphorene/ZnO Nanoâ€Heterojunctions for Broadband Photonic Nonvolatile Memory Applications. Advanced Materials, 2018, 30, e1801232.	21.0	98
30	Constructing hydrogen bond based melam/WO3 heterojunction with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2017, 205, 569-575.	20.2	45
31	Black Phosphorus Quantum Dots with Tunable Memory Properties and Multilevel Resistive Switching Characteristics. Advanced Science, 2017, 4, 1600435.	11.2	175
32	Interfacial effect on Mn-doped TiO ₂ nanoparticles: from paramagnetism to ferromagnetism. RSC Advances, 2016, 6, 57403-57408.	3.6	18
33	Annealing rate tuned magnetization level in polycrystalline ZnO:Cu films. Journal of Alloys and Compounds, 2016, 684, 132-136.	5.5	1
34	Acceptor defect-participating magnetic exchange in ZnO : Cu nanocrystalline film: defect structure evolution, Cu–N synergetic role and magnetic control. Journal of Materials Chemistry C, 2015, 3, 1330-1346.	5.5	28
35	Low temperature sintering properties of LiF-doped BaTiO3-based dielectric ceramics for AC MLCCs. Journal of Materials Science: Materials in Electronics, 2015, 26, 162-167.	2.2	10
36	Nanocomposites with BaTiO ₃ â€"SrTiO ₃ hybrid fillers exhibiting enhanced dielectric behaviours and energy-storage densities. Journal of Materials Chemistry C, 2015, 3, 4016-4022.	5 . 5	72

#	Article	IF	Citations
37	High performance of P(VDF-HFP)/Ag@TiO ₂ hybrid films with enhanced dielectric permittivity and low dielectric loss. RSC Advances, 2015, 5, 79342-79347.	3.6	36
38	Significantly Enhanced Dielectric Performance of Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 707 Td (fl TiO ₂ Particles. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27373-27381.	uoride- <i>8.0</i>	co-hexafl 130
39	Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Applied Catalysis B: Environmental, 2015, 166-167, 112-120.	20.2	175
40	Optical demagnetization in defect-mediated ferromagnetic ZnO:Cu films. Applied Physics Letters, 2014, 104, .	3.3	13
41	Unexpected magnetization enhancement in hydrogen plasma treated ferromagnetic (Zn,Cu)O film. Applied Physics Letters, 2014, 105, 072414.	3.3	7
42	Texture-etched broad surface features of double-layered ZnO:Al transparent conductive films for high haze values. Journal of Alloys and Compounds, 2014, 596, 107-112.	5.5	20
43	Investigation of morphology evolution of Cu–ZnO nanorod arrays and enhancement of ferromagnetism by codoping with N. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2763-2767.	2.1	4
44	Doping behaviors of yttrium, zinc and gallium in BaTiO3 ceramics for AC capacitor application. Journal of Materials Science: Materials in Electronics, 2014, 25, 2905-2912.	2.2	6
45	Structural and optical properties of ZnSO alloy thin films with different S contents grown by pulsed laser deposition. Journal of Alloys and Compounds, 2014, 582, 535-539.	5.5	15
46	Enhanced performance of NiMgO-based ultraviolet photodetector by rapid thermal annealing. Thin Solid Films, 2014, 558, 311-314.	1.8	15
47	Highly conducting and wide-band transparent F-doped Zn1â°Mg O thin films for optoelectronic applications. Journal of Alloys and Compounds, 2014, 602, 294-299.	5.5	22
48	Shape control of colloidal Mn doped ZnO nanocrystals and their visible light photocatalytic properties. Nanoscale, 2013, 5, 10461.	5.6	86
49	Wavelength tunable photoluminescence of ZnO1-xSx alloy thin films grown by reactive sputtering. Journal of Applied Physics, 2013, 114, 083522.	2.5	11
50	Colloidal chemically fabricated ZnO : Cu-based photodetector with extended UV-visible detection waveband. Nanoscale, 2013, 5, 9577.	5.6	55
51	Defects induced ferromagnetism in ZnO nanowire arrays doped with copper. CrystEngComm, 2013, 15, 7887.	2.6	31
52	Origin of highly stable conductivity of H plasma exposed ZnO films. Physical Chemistry Chemical Physics, 2013, 15, 17763.	2.8	15
53	Evidence for the carbon–nitrogen complex in ZnO nanostructures with very high nitrogen doping. Physical Chemistry Chemical Physics, 2013, 15, 1369-1373.	2.8	6
54	Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor. Sensors and Actuators B: Chemical, 2013, 186, 172-179.	7.8	127

#	Article	IF	CITATION
55	A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing. Journal of Materials Chemistry A, 2013, 1, 7511.	10.3	91
56	Dual-donor (Zni and VO) mediated ferromagnetism in copper-doped ZnO micron-scale polycrystalline films: a thermally driven defect modulation process. Nanoscale, 2013, 5, 3918.	5.6	46
57	lodineâ€ionâ€induced Sizeâ€tunable Co ₃ O ₄ Nanowires and the Sizeâ€dependent Catalytic Performance for CO Oxidation. ChemCatChem, 2013, 5, 3576-3581.	3.7	11
58	Valence band offset of <i>n</i> -ZnO/ <i>p</i> -Mg _{<i>x</i>} Ni _{1â^'} _{<i>xx</i>} O heterojunction measured by x-ray photoelectron spectroscopy. Applied Physics Letters, 2012, 101, 052109.	3.3	19
59	Island nucleation, optical and ferromagnetic properties of vertically aligned secondary growth ZnO : Cu nanorod arrays. Nanoscale, 2012, 4, 1627.	5.6	13
60	Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination. Applied Physics Letters, 2012, 100, 112103.	3.3	26
61	A facile method for the synthesis of tapered ZnO:Cu nanorod arrays and its secondary growth. Journal of Crystal Growth, 2012, 351, 93-100.	1.5	7
62	Inclined and ordered ZnO nanowire arrays developed on non-polar ZnO seed-layer films. CrystEngComm, 2012, 14, 4501.	2.6	4
63	Synthesis and Characterization of Single-Layer Silverâ^'Decanethiolate Lamellar Crystals. Journal of the American Chemical Society, 2011, 133, 4367-4376.	13.7	52
64	Self-Assembly and Ripening of Polymeric Silverâ ⁻ 'Alkanethiolate Crystals on Inert Surfaces. Langmuir, 2009, 25, 9585-9595.	3.5	28
65	Structural and luminescent properties of ZnO nanorods and ZnO/ZnS nanocomposites. Journal of Alloys and Compounds, 2009, 474, 531-535.	5. 5	46
66	Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures	5 . 5	51