Daniele Catalucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/977017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic recovery of impulse propagation in myocardial infarction via silicon carbide semiconductive nanowires. Nature Communications, 2022, 13, 6.	12.8	7
2	Biocompatible antimicrobial colistin loaded calcium phosphate nanoparticles for the counteraction of biofilm formation in cystic fibrosis related infections. Journal of Inorganic Biochemistry, 2022, 230, 111751.	3.5	5
3	Modulation of LTCC Pathways by a Melusin Mimetic Increases Ventricular Contractility During LPS-Induced Cardiomyopathy. Shock, 2022, 57, 318-325.	2.1	1
4	Mitochondrial a Kinase Anchor Proteins in Cardiovascular Health and Disease: A Review Article on Behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. International Journal of Molecular Sciences, 2022, 23, 7691.	4.1	1
5	The role of mitochondrial dynamics in cardiovascular diseases. British Journal of Pharmacology, 2021, 178, 2060-2076.	5.4	118
6	Optimization of In Vivo Studies by Combining Planar Dynamic and Tomographic Imaging: Workflow Evaluation on a Superparamagnetic Nanoparticles System. Molecular Imaging, 2021, 2021, 6677847.	1.4	1
7	Cardio Ultraefficient nanoParticles for Inhalation of Drug prOducts: when CUPIDO hits the nano-revolution in cardiology. European Heart Journal, 2021, 42, 3217-3220.	2.2	0
8	Myopalladin knockout mice develop cardiac dilation and show a maladaptive response to mechanical pressure overload. ELife, 2021, 10, .	6.0	12
9	Inhalable Microparticles Embedding Calcium Phosphate Nanoparticles for Heart Targeting: The Formulation Experimental Design. Pharmaceutics, 2021, 13, 1825.	4.5	13
10	Nano-miR-133a Replacement Therapy Blunts Pressure Overload–Induced Heart Failure. Circulation, 2021, 144, 1973-1976.	1.6	9
11	Calcium Phosphate Nanoparticle Precipitation by a Continuous Flow Process: A Design of Experiment Approach. Crystals, 2020, 10, 953.	2.2	11
12	Novel Basic Science Insights to Improve the Management of Heart Failure: Review of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. International Journal of Molecular Sciences, 2020, 21, 1192.	4.1	8
13	Peptide-Based Targeting of the L-Type Calcium Channel Corrects the Loss-of-Function Phenotype of Two Novel Mutations of the CACNA1 Gene Associated With Brugada Syndrome. Frontiers in Physiology, 2020, 11, 616819.	2.8	11
14	Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of Dnmt3b in cardiac cells. Scientific Reports, 2019, 9, 9320.	3.3	27
15	Disease modeling of a mutation in αâ€actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Molecular Medicine, 2019, 11, e11115.	6.9	88
16	Cardiovascular nanomedicine: the route ahead. Nanomedicine, 2019, 14, 2391-2394.	3.3	29
17	High Intensity Interval Training Ameliorates Mitochondrial Dysfunction in the Left Ventricle of Mice with Type 2 Diabetes. Cardiovascular Toxicology, 2019, 19, 422-431.	2.7	11
18	The role of small and long non-coding RNAs in cardiac pathologies. Non-coding RNA Investigation, 2019, 3, 21-21.	0.6	0

#	Article	IF	CITATIONS
19	Computational simulation of electromagnetic fields on human targets for magnetic targeting applications. , 2019, 2019, 5674-5677.		1
20	Nanomedicine Approaches for the Pulmonary Treatment of Cystic Fibrosis. Frontiers in Bioengineering and Biotechnology, 2019, 7, 406.	4.1	65
21	The noncoding-RNA landscape in cardiovascular health and disease. Non-coding RNA Research, 2018, 3, 12-19.	4.6	24
22	Inhalation of peptide-loaded nanoparticles improves heart failure. Science Translational Medicine, 2018, 10, .	12.4	132
23	A combined low-frequency electromagnetic and fluidic stimulation for a controlled drug release from superparamagnetic calcium phosphate nanoparticles: potential application for cardiovascular diseases. Journal of the Royal Society Interface, 2018, 15, 20180236.	3.4	19
24	MicroRNA-199a-3p and MicroRNA-199a-5p Take Part to a Redundant Network of Regulation of the NOS (NO Synthase)/NO Pathway in the Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2345-2357.	2.4	42
25	An anti-PDGFRÎ ² aptamer for selective delivery of small therapeutic peptide to cardiac cells. PLoS ONE, 2018, 13, e0193392.	2.5	16
26	T cell costimulation blockade blunts pressure overload-induced heart failure. Nature Communications, 2017, 8, 14680.	12.8	139
27	Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9006-E9015.	7.1	70
28	Dnmt3a-mediated inhibition of Wnt in cardiac progenitor cells improves differentiation and remote remodeling after infarction. JCI Insight, 2017, 2, .	5.0	12
29	The importance of being ncRNAs: from bit players as "junk DNA―to rising stars on the stage of the pharmaceutical industry. Annals of Translational Medicine, 2017, 5, 147-147.	1.7	3
30	Transcriptional and Epigenetic Controls of Vascular Homeostasis458Implication of microRNA 199a3p and 199a5p in vascular function : modulation of the eNOS/NO pathway459Role of endothelial cell adenosine deaminase acting on RNA-2 in ischemic/inflammatory disease in vivo460Adventitial activation by sonic hedgehog signaling is critical for vascular remodeling. Cardiovascular Research, 2016, 111,	3.8	0
31	S82-S82. Exercise training reverses myocardial dysfunction induced by CaMKIIδ _C overexpression by restoring Ca ²⁺ homeostasis. Journal of Applied Physiology, 2016, 121, 212-220.	2.5	14
32	Peptidomimetic Targeting of Ca _v β2 Overcomes Dysregulation of the L-Type Calcium Channel Density and Recovers Cardiac Function. Circulation, 2016, 134, 534-546.	1.6	42
33	Biomimetic Scaffolds Integrated with Patterns of Exogenous Growth Factors. , 2016, , 255-272.		0
34	MiR-153/Kv7.4: a novel molecular axis in the regulation of hypertension. Cardiovascular Research, 2016, 112, 530-531.	3.8	4
35	Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs. Nanomedicine, 2016, 11, 891-906.	3.3	89

Biomimetic Nanostructured Platforms for Biologically Inspired Medicine. , 2016, , 35-60.

1

#	Article	IF	CITATIONS
37	Neutrophils promote Alzheimer's disease–like pathology and cognitive decline via LFA-1 integrin. Nature Medicine, 2015, 21, 880-886.	30.7	589
38	FABP3 as Biomarker of Heart Pathology. Biomarkers in Disease, 2015, , 439-454.	0.1	5
39	Reduced aerobic capacity causes leaky ryanodine receptors that trigger arrhythmia in a rat strain artificially selected and bred for low aerobic running capacity. Acta Physiologica, 2014, 210, 854-864.	3.8	11
40	MicroRNA-133 Modulates the \hat{l}^2 ₁ -Adrenergic Receptor Transduction Cascade. Circulation Research, 2014, 115, 273-283.	4.5	115
41	17Inhibition of the ubiquitin ligase atrogin-1 impairs chmp2b turnover, blocks autophagy flux and causes cardiomyopathy. Cardiovascular Research, 2014, 103, S3.1-S3.	3.8	0
42	P587MiR-29a controls cardiac stem cells differentiation through Dnmt3a-mediated extinction of Wnt/beta-catenin. Cardiovascular Research, 2014, 103, S105.4-S106.	3.8	0
43	Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy. Journal of Clinical Investigation, 2014, 124, 2410-2424.	8.2	124
44	FABP3 as Biomarker of Heart Pathology. , 2014, , 1-13.		0
45	Abstract 360: MiR-133 Modulates the Beta1-Adrenergic Receptor Transduction Cascade. Circulation Research, 2014, 115, .	4.5	1
46	Abstract 182: Mimetic peptide overcomes dysregulated L-Type Calcium Channel density and recovers myocardial function. Circulation Research, 2014, 115, .	4.5	0
47	Relationship Between Downregulation of miRNAs and Increase of Oxidative Stress in the Development of Diabetic Cardiac Dysfunction: Junctin as a Target Protein of miR-1. Cell Biochemistry and Biophysics, 2013, 67, 1397-1408.	1.8	113
48	NFâ€₽̂B mediated miRâ€26a regulation in cardiac fibrosis. Journal of Cellular Physiology, 2013, 228, 1433-1442.	4.1	119
49	The Circulating Level of FABP3 Is an Indirect Biomarker of MicroRNA-1. Journal of the American College of Cardiology, 2013, 61, 88-95.	2.8	56
50	HEXIM1: a new player in myocardial hypertrophy?. Cardiovascular Research, 2013, 99, 1-3.	3.8	6
51	Early upregulation of miR-29a mediates differentiation of cardiac stem cells into cardiomyocytes through inhibition of endogenous Wnt/beta-catenin. European Heart Journal, 2013, 34, P1452-P1452.	2.2	1
52	An SRF/miR-1 axis regulates NCX1 and Annexin A5 protein levels in the normal and failing heart. Cardiovascular Research, 2013, 98, 372-380.	3.8	49
53	MicroRNA-1 Downregulation Increases Connexin 43 Displacement and Induces Ventricular Tachyarrhythmias in Rodent Hypertrophic Hearts. PLoS ONE, 2013, 8, e70158.	2.5	67
54	Mutual antagonism between IP3RII and miRNA-133a regulates calcium signals and cardiac hypertrophy. Journal of General Physiology, 2013, 141, i1-i1.	1.9	1

#	Article	IF	CITATIONS
55	Mutual antagonism between IP3RII and miRNA-133a regulates calcium signals and cardiac hypertrophy. Journal of Cell Biology, 2012, 199, 783-798.	5.2	80
56	APJ acts as a dual receptor in cardiac hypertrophy. Nature, 2012, 488, 394-398.	27.8	204
57	MiRâ€133a regulates collagen 1A1: Potential role of miRâ€133a in myocardial fibrosis in angiotensin IIâ€dependent hypertension. Journal of Cellular Physiology, 2012, 227, 850-856.	4.1	170
58	Altered βâ€∎drenergic response in mice lacking myotonic dystrophy protein kinase. Muscle and Nerve, 2012, 45, 128-130.	2.2	3
59	MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo. Circulation Research, 2011, 109, 880-893.	4.5	280
60	A comparative MudPIT analysis identifies different expression profiles in heart compartments. Proteomics, 2011, 11, 2320-2328.	2.2	32
61	Abstract P131: An Akt-Phosphomimetic Sequence of the Cavb2 C-Terminal Region Protects L-Type Calcium Channels from Protein Degradation. Circulation Research, 2011, 109, .	4.5	0
62	Immersion before dry simulated dive reduces cardiomyocyte function and increases mortality after decompression. Journal of Applied Physiology, 2010, 109, 752-757.	2.5	2
63	MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. Journal of Clinical Investigation, 2010, 120, 2805-2816.	8.2	291
64	MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. Journal of Clinical Investigation, 2010, 120, 3735-3735.	8.2	2
65	MicroRNAs in Cardiovascular Biology and Heart Disease. Circulation: Cardiovascular Genetics, 2009, 2, 402-408.	5.1	85
66	Reciprocal Regulation of MicroRNA-1 and Insulin-Like Growth Factor-1 Signal Transduction Cascade in Cardiac and Skeletal Muscle in Physiological and Pathological Conditions. Circulation, 2009, 120, 2377-2385.	1.6	356
67	Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel. Journal of General Physiology, 2009, 133, 459-459.	1.9	0
68	Interval Training Normalizes Cardiomyocyte Function, Diastolic Ca ²⁺ Control, and SR Ca ²⁺ Release Synchronicity in a Mouse Model of Diabetic Cardiomyopathy. Circulation Research, 2009, 105, 527-536.	4.5	173
69	Akt Increases Sarcoplasmic Reticulum Ca2+ Cycling by Direct Phosphorylation of Phospholamban at Thr17. Journal of Biological Chemistry, 2009, 284, 28180-28187.	3.4	62
70	Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability. Journal of Cell Biology, 2009, 184, 923-933.	5.2	101
71	The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death and Differentiation, 2009, 16, 1590-1598.	11.2	504
72	Akt regulates L-type Ca2+channel activity by modulating Cavα1 protein stability. Journal of General Physiology, 2009, 133, i4-i4.	1.9	1

#	Article	IF	CITATIONS
73	MicroRNAs Control Gene Expression. Annals of the New York Academy of Sciences, 2008, 1123, 20-29.	3.8	47
74	Deciphering the β-adrenergic response in human embryonic stem cell-derived-cardiac myocytes: closer to clinical use?. British Journal of Pharmacology, 2008, 153, 1765-1765.	5.4	0
75	Deciphering the βâ€adrenergic response in human embryonic stem cellâ€derivedâ€cardiac myocytes: closer to clinical use?. British Journal of Pharmacology, 2008, 153, 625-626.	5.4	2
76	Carbon Monoxide Levels Experienced by Heavy Smokers Impair Aerobic Capacity and Cardiac Contractility and Induce Pathological Hypertrophy. Inhalation Toxicology, 2008, 20, 635-646.	1.6	23
77	Heart failure: Targeting transcriptional and post-transcriptional control mechanisms of hypertrophy for treatment. International Journal of Biochemistry and Cell Biology, 2008, 40, 1643-1648.	2.8	26
78	MicroRNAs: novel regulators in cardiac development and disease. Cardiovascular Research, 2008, 79, 562-570.	3.8	310
79	MicroRNA and cardiac pathologies. Physiological Genomics, 2008, 34, 239-242.	2.3	76
80	Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO _{2max} . Physiological Genomics, 2008, 35, 213-221.	2.3	32
81	Physiological myocardial hypertrophy: how and why?. Frontiers in Bioscience - Landmark, 2008, 13, 312.	3.0	86
82	MicroRNAs and the Control of Heart Pathophysiology. , 2008, , 53-68.		0
83	Emerging Role of MicroRNAs in Cardiovascular Biology. Circulation Research, 2007, 101, 1225-1236.	4.5	272
84	Role of Myotonic Dystrophy Protein Kinase (DMPK) in Glucose Homeostasis and Muscle Insulin Action. PLoS ONE, 2007, 2, e1134.	2.5	36
85	MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 2007, 13, 613-618.	30.7	1,652
86	Cardiac-specific overexpression of E40K active Akt prevents pressure overload-induced heart failure in mice by increasing angiogenesis and reducing apoptosis. Cell Death and Differentiation, 2007, 14, 1060-1062.	11.2	40
87	Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: a role for repolarization waveform. Journal of Physiology, 2006, 571, 131-146.	2.9	99
88	Effects of Akt on Cardiac Myocytes. Circulation Research, 2006, 99, 339-341.	4.5	33
89	Myotonic Dystrophy Protein Kinase Phosphorylates Phospholamban and Regulates Calcium Uptake in Cardiomyocyte Sarcoplasmic Reticulum. Journal of Biological Chemistry, 2005, 280, 8016-8021.	3.4	36
90	An Adenovirus Type 5 (Ad5) Amplicon-Based Packaging Cell Line for Production of High-Capacity Helper-Independent ΔE1-E2-E3-E4 Ad5 Vectors. Journal of Virology, 2005, 79, 6400-6409.	3.4	24

#	Article	IF	CITATIONS
91	Homology modeling of the multicopper oxidase Fet3 gives new insights in the mechanism of iron transport in yeast. Protein Engineering, Design and Selection, 1999, 12, 895-897.	2.1	20