Shengwang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9770079/publications.pdf

Version: 2024-02-01

218677 315739 1,720 71 26 38 h-index citations g-index papers 72 72 72 1175 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas). Journal of General Virology, 2005, 86, 719-725.	2.9	122
2	Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection. BMC Genomics, 2013, 14, 743.	2.8	76
3	Fowl adenovirus species C serotype 4 is attributed to the emergence of hepatitis-hydropericardium syndrome in chickens in China. Infection, Genetics and Evolution, 2016, 45, 230-241.	2.3	72
4	Identification and molecular characterization of a novel serotype infectious bronchitis virus (GI-28) in China. Veterinary Microbiology, 2017, 198, 108-115.	1.9	62
5	Infectious bronchitis virus: S1 gene characteristics of vaccines used in China and efficacy of vaccination against heterologous strains from China. Avian Pathology, 2006, 35, 394-399.	2.0	61
6	Novel genotype of infectious bronchitis virus isolated in China. Veterinary Microbiology, 2019, 230, 178-186.	1.9	60
7	A comparative study of pigeons and chickens experimentally infected with PPMV-1 to determine antigenic relationships between PPMV-1 and NDV strains. Veterinary Microbiology, 2014, 168, 88-97.	1.9	53
8	Molecular characterization of the herpes simplex virus 1 (HSV-1) homologues, UL25 to UL30, in duck enteritis virus (DEV). Gene, 2007, 401, 88-96.	2.2	48
9	Genome characterization, antigenicity and pathogenicity of a novel infectious bronchitis virus type isolated from south China. Infection, Genetics and Evolution, 2017, 54, 437-446.	2.3	46
10	Molecular Characterization and Pathogenicity of Infectious Bronchitis Coronaviruses: Complicated Evolution and Epidemiology in China Caused by Cocirculation of Multiple Types of Infectious Bronchitis Coronaviruses. Intervirology, 2009, 52, 223-234.	2.8	44
11	Evaluation of the protection conferred by commercial vaccines and attenuated heterologous isolates in China against the CK/CH/LDL/97I strain of infectious bronchitis coronavirus. Veterinary Journal, 2009, 179, 130-136.	1.7	43
12	Genetic diversity of avian infectious bronchitis virus in China in recent years. Infection, Genetics and Evolution, 2018, 66, 82-94.	2.3	43
13	S1 gene sequence heterogeneity of a pathogenic infectious bronchitis virus strain and its embryo-passaged, attenuated derivatives. Avian Pathology, 2007, 36, 231-234.	2.0	42
14	Serotype shift of a 793/B genotype infectious bronchitis coronavirus by natural recombination. Infection, Genetics and Evolution, 2015, 32, 377-387.	2.3	41
15	Altered pathogenicity, immunogenicity, tissue tropism and 3′-7kb region sequence of an avian infectious bronchitis coronavirus strain after serial passage in embryos. Vaccine, 2009, 27, 4630-4640.	3.8	38
16	Characterization of a recombinant coronavirus infectious bronchitis virus with distinct S1 subunits of spike and nucleocapsid genes and a 3′ untranslated region. Veterinary Microbiology, 2013, 162, 429-436.	1.9	37
17	Molecular and antigenic characteristics of Massachusetts genotype infectious bronchitis coronavirus in China. Veterinary Microbiology, 2015, 181, 241-251.	1.9	34
18	Recombinant Newcastle disease virus expressing the infectious bronchitis virus S1 gene protects chickens against Newcastle disease virus and infectious bronchitis virus challenge. Vaccine, 2017, 35, 2435-2442.	3.8	32

#	Article	IF	Citations
19	Effects of hypervariable regions in spike protein on pathogenicity, tropism, and serotypes of infectious bronchitis virus. Virus Research, 2018, 250, 104-113.	2.2	32
20	Avian Flavivirus Infection of Monocytes/Macrophages by Extensive Subversion of Host Antiviral Innate Immune Responses. Journal of Virology, 2019, 93, .	3.4	32
21	Emergence of novel nephropathogenic infectious bronchitis viruses currently circulating in Chinese chicken flocks. Avian Pathology, 2016, 45, 54-65.	2.0	29
22	Adaptation and Attenuation of Duck Tembusu Virus Strain Du/CH/LSD/110128 following Serial Passage in Chicken Embryos. Vaccine Journal, 2014, 21, 1046-1053.	3.1	27
23	Molecular and antigenic characteristics of Newcastle disease virus isolates from domestic ducks in China. Infection, Genetics and Evolution, 2015, 32, 34-43.	2.3	27
24	Serotype, antigenicity, and pathogenicity of a naturally recombinant TW I genotype infectious bronchitis coronavirus in China. Veterinary Microbiology, 2016, 191, 1-8.	1.9	27
25	Recombinant duck enteritis viruses expressing major structural proteins of the infectious bronchitis virus provide protection against infectious bronchitis in chickens. Antiviral Research, 2016, 130, 19-26.	4.1	27
26	Differential modulation of avian \hat{l}^2 -defensin and Toll-like receptor expression in chickens infected with infectious bronchitis virus. Applied Microbiology and Biotechnology, 2015, 99, 9011-9024.	3.6	26
27	Altered pathogenicity of a tl/CH/LDT3/03 genotype infectious bronchitis coronavirus due to natural recombination in the $5\hat{a}\in^2$ - 17 kb region of the genome. Virus Research, 2016, 213, 140-148.	2.2	26
28	Isolation and pathogenicity of the mammalian orthoreovirus MPC/04 from masked civet cats. Infection, Genetics and Evolution, 2015, 36, 55-61.	2.3	25
29	Comparative analysis of four Massachusetts type infectious bronchitis coronavirus genomes reveals a novel Massachusetts type strain and evidence of natural recombination in the genome. Infection, Genetics and Evolution, 2013, 14, 29-38.	2.3	24
30	Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection. Proteomics, 2014, 14, 1403-1423.	2.2	22
31	Origin and characteristics of the recombinant novel avian infectious bronchitis coronavirus isolate ck/CH/LJL/111054. Infection, Genetics and Evolution, 2014, 23, 189-195.	2.3	22
32	Induction of Avian \hat{I}^2 -Defensin 2 Is Possibly Mediated by the p38 MAPK Signal Pathway in Chicken Embryo Fibroblasts After Newcastle Disease Virus Infection. Frontiers in Microbiology, 2018, 9, 751.	3.5	21
33	Identification of a Newly Isolated Avian Infectious Bronchitis Coronavirus Variant in China Exhibiting Affinity for the Respiratory Tract. Avian Diseases, 2008, 52, 306-314.	1.0	19
34	Characterization and pathogenicity of a novel mammalian orthoreovirus from wild short-nosed fruit bats. Infection, Genetics and Evolution, 2016, 43, 347-353.	2.3	19
35	Origin and evolution of LX4 genotype infectious bronchitis coronavirus in China. Veterinary Microbiology, 2017, 198, 9-16.	1.9	19
36	Identification of the avian infectious bronchitis coronaviruses with mutations in gene 3. Gene, 2008, 412, 12-25.	2.2	18

#	Article	IF	Citations
37	Molecular and biological characteristics of the infectious bronchitis virus TC07-2/GVI-1 lineage isolated in China. Infection, Genetics and Evolution, 2019, 75, 103942.	2.3	18
38	Infection of Goose with Genotype VIId Newcastle Disease Virus of Goose Origin Elicits Strong Immune Responses at Early Stage. Frontiers in Microbiology, 2016, 7, 1587.	3.5	17
39	Genetic, antigenic, and pathogenic characteristics of Newcastle disease viruses isolated from geese in China. Journal of Veterinary Diagnostic Investigation, 2017, 29, 489-498.	1.1	17
40	Chicken galectin-1B inhibits Newcastle disease virus adsorption and replication through binding to hemagglutininâ€"neuraminidase (HN) glycoprotein. Journal of Biological Chemistry, 2017, 292, 20141-20161.	3.4	17
41	Characterization of the complete genome, antigenicity, pathogenicity, tissue tropism, and shedding of a recombinant avian infectious bronchitis virus with a ck/CH/LJL/140901-like backbone and an S2 fragment from a 4/91-like virus. Virus Research, 2018, 244, 99-109.	2.2	17
42	Host Avian Beta-Defensin and Toll-Like Receptor Responses of Pigeons following Infection with Pigeon Paramyxovirus Type 1. Applied and Environmental Microbiology, 2015, 81, 6415-6424.	3.1	15
43	Genetic, antigenic, and pathogenic characteristics of avian infectious bronchitis viruses genotypically related to 793/B in China. Veterinary Microbiology, 2017, 203, 125-135.	1.9	15
44	Genetic and biological characteristics of four novel recombinant avian infectious bronchitis viruses isolated in China. Virus Research, 2019, 263, 87-97.	2.2	15
45	Multiple recombination events between field and vaccine strains resulted in the emergence of a novel infectious bronchitis virus with decreased pathogenicity and altered replication capacity. Poultry Science, 2020, 99, 1928-1938.	3.4	14
46	Newcastle Disease Virus Entry into Chicken Macrophages via a pH-Dependent, Dynamin and Caveola-Mediated Endocytic Pathway That Requires Rab5. Journal of Virology, 2021, 95, e0228820.	3.4	14
47	Integrated High Throughput Analysis Identifies GSK3 as a Crucial Determinant of p53-Mediated Apoptosis in Lung Cancer Cells. Cellular Physiology and Biochemistry, 2017, 42, 1177-1191.	1.6	13
48	Rapid and sensitive real-time recombinase polymerase amplification for detection of Marek's disease virus. Molecular and Cellular Probes, 2019, 48, 101468.	2.1	13
49	Recombinant infectious laryngotracheitis virus expressing Newcastle disease virus F protein protects chickens against infectious laryngotracheitis virus and Newcastle disease virus challenge. Vaccine, 2018, 36, 7975-7986.	3.8	11
50	Global exploration of the metabolic requirements of gallid alphaherpesvirus 1. PLoS Pathogens, 2020, 16, e1008815.	4.7	11
51	Genome-Wide Gene Expression Analysis Identifies the Proto-oncogene Tyrosine-Protein Kinase Src as a Crucial Virulence Determinant of Infectious Laryngotracheitis Virus in Chicken Cells. Journal of Virology, 2016, 90, 9-21.	3.4	10
52	Genetics, antigenicity and virulence properties of three infectious bronchitis viruses isolated from a single tracheal sample in a chicken with respiratory problems. Virus Research, 2018, 257, 82-93.	2.2	9
53	Gallid Herpesvirus 1 Initiates Apoptosis in Uninfected Cells through Paracrine Repression of p53. Journal of Virology, 2018, 92, .	3.4	9
54	Genetic, antigenic and pathogenic characterization of avian coronaviruses isolated from pheasants (Phasianus colchicus) in China. Veterinary Microbiology, 2020, 240, 108513.	1.9	9

#	Article	IF	Citations
55	A highly pathogenic GI-19 lineage infectious bronchitis virus originated from multiple recombination events with broad tissue tropism. Virus Research, 2020, 285, 198002.	2.2	8
56	Polarization of avian macrophages upon avian flavivirus infection. Veterinary Microbiology, 2021, 256, 109044.	1.9	8
57	Phylogeny of Duck Enteritis Virus: Evolutionary Relationship in the Family & lt;i>Herpesviridae. Intervirology, 2008, 51, 151-165.	2.8	7
58	Host Src controls gallid alpha herpesvirus 1 intercellular spread in a cellular fatty acid metabolism-dependent manner. Virology, 2019, 537, 1-13.	2.4	7
59	Fos Facilitates Gallid Alpha-Herpesvirus 1 Infection by Transcriptional Control of Host Metabolic Genes and Viral Immediate Early Gene. Viruses, 2021, 13, 1110.	3.3	7
60	Glutamine Ameliorates Mucosal Damage Caused by Immune Responses to Duck Plague Virus. Dose-Response, 2017, 15, 155932581770867.	1.6	6
61	Genetic, Antigenic, and Pathogenic Characteristics of Infectious Bronchitis Virus GI-7/TW-II in China. Avian Diseases, 2020, 64, 183.	1.0	6
62	Surveillance of Class I Newcastle Disease Virus at Live Bird Markets in China and Identification of Variants with Increased Virulence and Replication Capacity. Journal of Virology, 2022, 96, e0024122.	3.4	6
63	PFT- $\hat{l}\pm$ inhibits gallid alpha herpesvirus 1 replication by repressing host nucleotide metabolism and ATP synthesis. Veterinary Microbiology, 2022, 269, 109435.	1.9	5
64	Isolation and Characteristics of the Arkansas-Type Infectious Bronchitis Virus in China. Avian Diseases, 2017, 62, 18.	1.0	4
65	Genetic and antigenic heterogeneity of GI-1/Massachusetts lineage infectious bronchitis virus variants recently isolated in China. Poultry Science, 2020, 99, 5440-5451.	3.4	4
66	Construction and immune protection evaluation of recombinant virus expressing Newcastle disease virus F protein by the largest intergenic region of fowlpox virus NX10. Virus Genes, 2020, 56, 734-748.	1.6	3
67	Protection of chicks from Newcastle disease by combined vaccination with a plasmid DNA and the pre-fusion protein of the virulent genotype VII of Newcastle disease virus. Vaccine, 2020, 38, 7337-7349.	3.8	3
68	Single-Cell Analysis of the In Vivo Dynamics of Host Circulating Immune Cells Highlights the Importance of Myeloid Cells in Avian Flaviviral Infection. Journal of Immunology, 2021, 207, 2878-2891.	0.8	3
69	Glycoprotein-C-gene-deleted recombinant infectious laryngotracheitis virus expressing a genotype VII Newcastle disease virus fusion protein protects against virulent infectious laryngotracheitis virus and Newcastle disease virus. Veterinary Microbiology, 2020, 250, 108835.	1.9	2
70	Replication and vaccine protection of multiple infectious bronchitis virus strains in pheasants (Phasianus colchicus). Infection, Genetics and Evolution, 2021, 93, 104980.	2.3	1
71	Corrigendum to "Discovery and characterization of <i>Coturnix chinensis</i> avian <i>β</i> â€defensin 10, with broad antibacterial activityâ€. J. Pept. Sci. 2012; 18: 224–232. Journal of Peptide Science, 2013, 19, 459-459.	1.4	0