
Xiaohong Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9764425/publications.pdf Version: 2024-02-01

XIAOHONC ZHUANC

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	MicroRNAs Inhibit the Translation of Target mRNAs on the Endoplasmic Reticulum in Arabidopsis. Cell, 2013, 153, 562-574.	28.9	451
3	Identification of Multivesicular Bodies as Prevacuolar Compartments in Nicotiana tabacum BY-2 Cells[W]. Plant Cell, 2004, 16, 672-693.	6.6	386
4	Organelle pH in the Arabidopsis Endomembrane System. Molecular Plant, 2013, 6, 1419-1437.	8.3	310
5	Rice SCAMP1 Defines Clathrin-Coated, trans-Golgi–Located Tubular-Vesicular Structures as an Early Endosome in Tobacco BY-2 Cells. Plant Cell, 2007, 19, 296-319.	6.6	258
6	A role for theAtMTP11gene of Arabidopsis in manganese transport and tolerance. Plant Journal, 2007, 51, 198-210.	5.7	235
7	EXPO, an Exocyst-Positive Organelle Distinct from Multivesicular Endosomes and Autophagosomes, Mediates Cytosol to Cell Wall Exocytosis in <i>Arabidopsis</i> and Tobacco Cells Â. Plant Cell, 2011, 22, 4009-4030.	6.6	229
8	The Endosomal System of Plants: Charting New and Familiar Territories. Plant Physiology, 2008, 147, 1482-1492.	4.8	223
9	Integral Membrane Protein Sorting to Vacuoles in Plant Cells: Evidence for Two Pathways. Journal of Cell Biology, 1998, 143, 1183-1199.	5.2	213
10	Rha1, an Arabidopsis Rab5 Homolog, Plays a Critical Role in the Vacuolar Trafficking of Soluble Cargo Proteins. Plant Cell, 2003, 15, 1057-1070.	6.6	208
11	Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nature Protocols, 2007, 2, 2348-2353.	12.0	206
12	ATG9 regulates autophagosome progression from the endoplasmic reticulum in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E426-E435.	7.1	200
13	A BAR-Domain Protein SH3P2, Which Binds to Phosphatidylinositol 3-Phosphate and ATG8, Regulates Autophagosome Formation in Arabidopsis. Plant Cell, 2013, 25, 4596-4615.	6.6	195
14	A Unique Plant ESCRT Component, FREE1, Regulates Multivesicular Body Protein Sorting and Plant Growth. Current Biology, 2014, 24, 2556-2563.	3.9	194
15	Activation of the Rab7 GTPase by the MON1-CCZ1 Complex Is Essential for PVC-to-Vacuole Trafficking and Plant Growth in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 2080-2097.	6.6	192
16	Biogenesis of the Protein Storage Vacuole Crystalloid. Journal of Cell Biology, 2000, 150, 755-770.	5.2	171
17	Dual roles of an <i>Arabidopsis</i> ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1886-1891.	7.1	166
18	Unconventional protein secretion. Trends in Plant Science, 2012, 17, 606-615.	8.8	147

#	Article	IF	CITATIONS
19	Plant Retromer, Localized to the Prevacuolar Compartment and Microvesicles in Arabidopsis, May Interact with Vacuolar Sorting Receptors. Plant Cell, 2006, 18, 1239-1252.	6.6	143
20	A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. ELife, 2020, 9, .	6.0	139
21	Wortmannin induces homotypic fusion of plant prevacuolar compartments*. Journal of Experimental Botany, 2009, 60, 3075-3083.	4.8	134
22	FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. Plant Cell, 2016, 28, 2291-2311.	6.6	129
23	Localization of Green Fluorescent Protein Fusions with the Seven Arabidopsis Vacuolar Sorting Receptors to Prevacuolar Compartments in Tobacco BY-2 Cells. Plant Physiology, 2006, 142, 945-962.	4.8	125
24	Plant extracellular vesicles. Protoplasma, 2020, 257, 3-12.	2.1	116
25	Retromer recycles vacuolar sorting receptors from the <i>trans</i> -Golgi network. Plant Journal, 2010, 61, 107-121.	5.7	115
26	Biogenesis of Plant Prevacuolar Multivesicular Bodies. Molecular Plant, 2016, 9, 774-786.	8.3	115
27	Plant ESCRT Complexes: Moving Beyond Endosomal Sorting. Trends in Plant Science, 2017, 22, 986-998.	8.8	109
28	TRAF Family Proteins Regulate Autophagy Dynamics by Modulating AUTOPHAGY PROTEIN6 Stability in Arabidopsis. Plant Cell, 2017, 29, 890-911.	6.6	108
29	BFAâ€induced compartments from the Golgi apparatus and <i>trans</i> â€Golgi network/early endosome are distinct in plant cells. Plant Journal, 2009, 60, 865-881.	5.7	107
30	BP-80 and Homologs are Concentrated on Post-Golgi, Probable Lytic Prevacuolar Compartments. Plant and Cell Physiology, 2002, 43, 726-742.	3.1	99
31	The Golgi-Localized <i>Arabidopsis</i> Endomembrane Protein12 Contains Both Endoplasmic Reticulum Export and Golgi Retention Signals at Its C Terminus. Plant Cell, 2012, 24, 2086-2104.	6.6	98
32	Unconventional protein secretion in plants: a critical assessment. Protoplasma, 2016, 253, 31-43.	2.1	96
33	Dynamics of Autophagosome Formation. Plant Physiology, 2018, 176, 219-229.	4.8	95
34	Tracking down the elusive early endosome. Trends in Plant Science, 2007, 12, 497-505.	8.8	91
35	A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. Nature Plants, 2019, 5, 95-105.	9.3	89
36	<i>Trans</i> -Golgi Network-Located AP1 Gamma Adaptins Mediate Dileucine Motif-Directed Vacuolar Targeting in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 4102-4118.	6.6	87

#	Article	IF	CITATIONS
37	Retention mechanisms for ER and Golgi membrane proteins. Trends in Plant Science, 2014, 19, 508-515.	8.8	83
38	Unconventional protein secretion (UPS) pathways in plants. Current Opinion in Cell Biology, 2014, 29, 107-115.	5.4	78
39	The Arabidopsis Endosomal Sorting Complex Required for Transport III Regulates Internal Vesicle Formation of the Prevacuolar Compartment and Is Required for Plant Development. Plant Physiology, 2014, 165, 1328-1343.	4.8	76
40	Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants. Protoplasma, 2016, 253, 753-764.	2.1	76
41	Protein secretion in plants: conventional and unconventional pathways and new techniques. Journal of Experimental Botany, 2018, 69, 21-37.	4.8	74
42	Autophagosome Biogenesis and the Endoplasmic Reticulum: A Plant Perspective. Trends in Plant Science, 2018, 23, 677-692.	8.8	74
43	Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Molecular Biology of the Cell, 2014, 25, 412-426.	2.1	71
44	Protein Mobilization in Germinating Mung Bean Seeds Involves Vacuolar Sorting Receptors and Multivesicular Bodies. Plant Physiology, 2007, 143, 1628-1639.	4.8	70
45	The vacuolar transport of aleurainâ€GFP and 2S albuminâ€GFP fusions is mediated by the same preâ€vacuolar compartments in tobacco BYâ€2 and Arabidopsis suspension cultured cells. Plant Journal, 2008, 56, 824-839.	5.7	69
46	The plant ESCRT component FREE1 shuttles to the nucleus to attenuate abscisic acid signalling. Nature Plants, 2019, 5, 512-524.	9.3	68
47	Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER–Golgi–TGN–PM pathway. Plant Journal, 2011, 65, 882-896.	5.7	67
48	AtSec62 is critical for plant development and is involved in ERâ€phagy in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2020, 62, 181-200.	8.5	67
49	Dynamic Response of Prevacuolar Compartments to Brefeldin A in Plant Cells. Plant Physiology, 2006, 142, 1442-1459.	4.8	66
50	Unique COPII component AtSar1a/AtSec23a pair is required for the distinct function of protein ER export in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14360-14365.	7.1	65
51	Endocytic and autophagic pathways crosstalk in plants. Current Opinion in Plant Biology, 2015, 28, 39-47.	7.1	65
52	K ⁺ Efflux Antiporters 4, 5, and 6 Mediate pH and K ⁺ Homeostasis in Endomembrane Compartments. Plant Physiology, 2018, 178, 1657-1678.	4.8	65
53	Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway. BMC Plant Biology, 2012, 12, 164.	3.6	62
54	A Distinct Pathway for Polar Exocytosis in Plant Cell Wall Formation Â. Plant Physiology, 2016, 172, 1003-1018.	4.8	61

#	Article	IF	CITATIONS
55	COPII Paralogs in Plants: Functional Redundancy or Diversity?. Trends in Plant Science, 2016, 21, 758-769.	8.8	61
56	Selective Membrane Protein Internalization Accompanies Movement from the Endoplasmic Reticulum to the Protein Storage Vacuole Pathway in Arabidopsis. Plant Cell, 2005, 17, 3066-3080.	6.6	59
57	Isolation, Culture, and Transient Transformation of Plant Protoplasts. Current Protocols in Cell Biology, 2014, 63, 2.8.1-17.	2.3	58
58	The roles of endomembrane trafficking in plant abiotic stress responses. Journal of Integrative Plant Biology, 2020, 62, 55-69.	8.5	57
59	Multivesicular bodies: a mechanism to package lytic and storage functions in one organelle?. Trends in Cell Biology, 2002, 12, 362-367.	7.9	56
60	Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant Journal, 2010, 61, 826-838.	5.7	56
61	Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nature Protocols, 2011, 6, 419-426.	12.0	55
62	Chloroplast Degradation: Multiple Routes Into the Vacuole. Frontiers in Plant Science, 2019, 10, 359.	3.6	54
63	Formic acid induces Yca1p-independent apoptosis-like cell death in the yeast Saccharomyces cerevisiae. FEMS Yeast Research, 2008, 8, 531-539.	2.3	50
64	SCAMPs Highlight the Developing Cell Plate during Cytokinesis in Tobacco BY-2 Cells Â. Plant Physiology, 2008, 147, 1637-1645.	4.8	50
65	QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells. Journal of Experimental Botany, 2011, 62, 5063-5078.	4.8	50
66	Apical <scp>F</scp> â€actinâ€regulated exocytic targeting of <scp>N</scp> t <scp>PPME</scp> 1 is essential for construction and rigidity of the pollen tube cell wall. Plant Journal, 2013, 76, 367-379.	5.7	50
67	Vacuole Biogenesis in Plants: How Many Vacuoles, How Many Models?. Trends in Plant Science, 2020, 25, 538-548.	8.8	50
68	Vacuolar Sorting Receptor (VSR) Proteins Reach the Plasma Membrane in Germinating Pollen Tubes. Molecular Plant, 2011, 4, 845-853.	8.3	47
69	ARA7(Q69L) expression in transgenic Arabidopsis cells induces the formation of enlarged multivesicular bodies. Journal of Experimental Botany, 2013, 64, 2817-2829.	4.8	47
70	Friendly mediates membrane depolarization-induced mitophagy in Arabidopsis. Current Biology, 2021, 31, 1931-1944.e4.	3.9	47
71	SINAT E3 Ubiquitin Ligases Mediate FREE1 and VPS23A Degradation to Modulate Abscisic Acid Signaling. Plant Cell, 2020, 32, 3290-3310.	6.6	46
72	EXPO and Autophagosomes are Distinct Organelles in Plants. Plant Physiology, 2015, 169, pp.00953.2015.	4.8	43

#	Article	IF	CITATIONS
73	SH3 Domain-Containing Protein 2 Plays a Crucial Role at the Step of Membrane Tubulation during Cell Plate Formation. Plant Cell, 2017, 29, 1388-1405.	6.6	42
74	Conserved function of the lysine-based KXD/E motif in Golgi retention for endomembrane proteins among different organisms. Molecular Biology of the Cell, 2015, 26, 4280-4293.	2.1	41
75	A plant Bro1 domain protein BRAF regulates multivesicular body biogenesis and membrane protein homeostasis. Nature Communications, 2018, 9, 3784.	12.8	41
76	Vacuolar Degradation of Two Integral Plasma Membrane Proteins, <scp>AtLRR84A</scp> and <scp>OsSCAMP1</scp> , IsÂCargo Ubiquitinationâ€Independent and Prevacuolar Compartmentâ€Mediated in Plant Cells. Traffic, 2012, 13, 1023-1040.	2.7	39
77	Signal motifs-dependent ER export of Qc-SNARE BET12 interacts with MEMB12 and affects PR1 trafficking in <i>Arabidopsis</i> . Journal of Cell Science, 2018, 131, .	2.0	39
78	VPS36-Dependent Multivesicular Bodies Are Critical for Plasmamembrane Protein Turnover and Vacuolar Biogenesis. Plant Physiology, 2017, 173, 566-581.	4.8	39
79	An <i>in vivo</i> expression system for the identification of cargo proteins of vacuolar sorting receptors in <scp>A</scp> rabidopsis culture cells. Plant Journal, 2013, 75, 1003-1017.	5.7	38
80	Subnanometer resolution cryo-EM structure of <i>Arabidopsis thaliana</i> ATG9. Autophagy, 2020, 16, 575-583.	9.1	36
81	Autophagosome biogenesis in plants. Autophagy, 2014, 10, 704-705.	9.1	35
82	A unique AtSar1D-AtRabD2a nexus modulates autophagosome biogenesis in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
83	Plant Prevacuolar/Endosomal Compartments. International Review of Cytology, 2006, 253, 95-129.	6.2	31
84	<i>N</i> â€linked glycosylation of At <scp>VSR</scp> 1 is important for vacuolar protein sorting in <scp>A</scp> rabidopsis. Plant Journal, 2014, 80, 977-992.	5.7	31
85	Expression and characterization of two functional vacuolar sorting receptor (VSR) proteins, BP-80 and AtVSR4 from culture media of transgenic tobacco BY-2 cells. Plant Science, 2010, 179, 68-76.	3.6	30
86	Vacuoles protect plants from high magnesium stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2931-2932.	7.1	29
87	AtNBR1 Is a Selective Autophagic Receptor for AtExo70E2 in Arabidopsis. Plant Physiology, 2020, 184, 777-791.	4.8	28
88	AtBRO1 Functions in ESCRT-I Complex to Regulate Multivesicular Body Protein Sorting. Molecular Plant, 2016, 9, 760-763.	8.3	27
89	MONENSIN SENSITIVITY1 (MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-Mediated Rab7 Activation Regulates Tapetal Programmed Cell Death and Pollen Development. Plant Physiology, 2017, 173, 206-218.	4.8	25
90	SINAT E3 ligases regulate the stability of the ESCRT component FREE1 in response to iron deficiency in plants. Journal of Integrative Plant Biology, 2020, 62, 1399-1417.	8.5	25

#	Article	IF	CITATIONS
91	The Multivesicular Body and Autophagosome Pathways in Plants. Frontiers in Plant Science, 2018, 9, 1837.	3.6	24
92	Storage globulins pass through the Golgi apparatus and multivesicular bodies in the absence of dense vesicle formation during early stages of cotyledon development in mung bean. Journal of Experimental Botany, 2012, 63, 1367-1380.	4.8	23
93	Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier. Plant Physiology, 2016, 171, 1965-1982.	4.8	22
94	How Vacuolar Sorting Receptor Proteins Interact with Their Cargo Proteins: Crystal Structures of Apo and Cargo-Bound Forms of the Protease-Associated Domain from an <i>Arabidopsis</i> Vacuolar Sorting Receptor. Plant Cell, 2014, 26, 3693-3708.	6.6	21
95	Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. Science China Life Sciences, 2021, 64, 1392-1422.	4.9	21
96	ER-Phagy and ER Stress Response (ERSR) in Plants. Frontiers in Plant Science, 2019, 10, 1192.	3.6	20
97	RST1 Is a FREE1 Suppressor That Negatively Regulates Vacuolar Trafficking in Arabidopsis. Plant Cell, 2019, 31, 2152-2168.	6.6	20
98	A plantâ€unique ESCRT component, FYVE4, regulates multivesicular endosome biogenesis and plant growth. New Phytologist, 2021, 231, 193-209.	7.3	20
99	Na ⁺ ,K ⁺ /H ⁺ antiporters regulate the pH of endoplasmic reticulum and auxinâ€mediated development. Plant, Cell and Environment, 2018, 41, 850-864.	5.7	19
100	Fast-Suppressor Screening for New Components in Protein Trafficking, Organelle Biogenesis and Silencing Pathway in Arabidopsis thaliana Using DEX-Inducible FREE1-RNAi Plants. Journal of Genetics and Genomics, 2015, 42, 319-330.	3.9	18
101	Possible Roles of Membrane Trafficking Components for Lipid Droplet Dynamics in Higher Plants and Green Algae. Frontiers in Plant Science, 2019, 10, 207.	3.6	18
102	Transcriptional and Epigenetic Regulation of Autophagy in Plants. Trends in Genetics, 2020, 36, 676-688.	6.7	18
103	Plant Rho GTPase signaling promotes autophagy. Molecular Plant, 2021, 14, 905-920.	8.3	18
104	Origin of the Autophagosomal Membrane in Plants. Frontiers in Plant Science, 2016, 7, 1655.	3.6	17
105	The interplay between endomembranes and autophagy in plants. Current Opinion in Plant Biology, 2019, 52, 14-22.	7.1	17
106	An Update on Coat Protein Complexes for Vesicle Formation in Plant Post-Golgi Trafficking. Frontiers in Plant Science, 2022, 13, 826007.	3.6	16
107	Organelle Identification and Characterization in Plant Cells: Using a Combinational Approach of Confocal Immunofluorescence and Electron Microscope. Journal of Plant Biology, 2009, 52, 1-9.	2.1	15
108	Review: Selective degradation of peroxisome by autophagy in plants: Mechanisms, functions, and perspectives. Plant Science, 2018, 274, 485-491.	3.6	15

#	Article	IF	CITATIONS
109	A distinct giant coat protein complex II vesicle population in Arabidopsis thaliana. Nature Plants, 2021, 7, 1335-1346.	9.3	15
110	Recent Advances in Membrane Shaping for Plant Autophagosome Biogenesis. Frontiers in Plant Science, 2020, 11, 565.	3.6	13
111	Plant Mitophagy in Comparison to Mammals: What Is Still Missing?. International Journal of Molecular Sciences, 2021, 22, 1236.	4.1	13
112	Membrane imaging in the plant endomembrane system. Plant Physiology, 2021, 185, 562-576.	4.8	13
113	Molecular Characterization of Plant Prevacuolar and Endosomal Compartments. Journal of Integrative Plant Biology, 2007, 49, 1119-1128.	8.5	12
114	Mechanistic insights into an atypical interaction between ATG8 and SH3P2 in <i>Arabidopsis thaliana</i> . Autophagy, 2022, 18, 1350-1366.	9.1	12
115	Plant ESCRT protein ALIX coordinates with retromer complex in regulating receptor-mediated sorting of soluble vacuolar proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200492119.	7.1	12
116	Correlation of vacuole morphology with stomatal lineage development by whole-cell electron tomography. Plant Physiology, 2022, 188, 2085-2100.	4.8	11
117	Successful transport to the vacuole of heterologously expressed mung bean 8S globulin occurs in seed but not in vegetative tissues. Journal of Experimental Botany, 2013, 64, 1587-1601.	4.8	9
118	Structural Biology and Electron Microscopy of the Autophagy Molecular Machinery. Cells, 2019, 8, 1627.	4.1	9
119	ESCRTâ€dependent vacuolar sorting and degradation of the auxin biosynthetic enzyme YUC1 flavin monooxygenase. Journal of Integrative Plant Biology, 2019, 61, 968-973.	8.5	9
120	Systematic prediction of autophagyâ€related proteins using <i>Arabidopsis thaliana</i> interactome data. Plant Journal, 2021, 105, 708-720.	5.7	9
121	The plant ESCRT component FREE1 regulates peroxisome-mediated turnover of lipid droplets in germinating <i>Arabidopsis</i> seedlings. Plant Cell, 2022, 34, 4255-4273.	6.6	9
122	Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells. Methods in Molecular Biology, 2016, 1474, 113-123.	0.9	8
123	Structural insights into how vacuolar sorting receptors recognize the sorting determinants of seed storage proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
124	Targeting tail-anchored proteins into plant organelles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1762-1764.	7.1	7
125	Re-assessment of biolistic transient expression: An efficient and robust method for protein localization studies in seedling-lethal mutant and juvenile plants. Plant Science, 2018, 274, 2-7.	3.6	7
126	Membrane Contact Sites and Organelles Interaction in Plant Autophagy. Frontiers in Plant Science, 2020, 11, 477.	3.6	7

#	Article	IF	CITATIONS
127	COPII vesicles in plant autophagy and endomembrane trafficking. FEBS Letters, 2022, 596, 2314-2323.	2.8	7
128	Hormone modulates protein dynamics to regulate plant growth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3521-3523.	7.1	6
129	New insights into AtNBR1 as a selective autophagy cargo receptor in Arabidopsis. Plant Signaling and Behavior, 2021, 16, 1839226.	2.4	6
130	MYB117 is a negative regulator of flowering time in Arabidopsis. Plant Signaling and Behavior, 2021, 16, 1901448.	2.4	6
131	Protein Co-localization Studies: Issues and Considerations. Molecular Plant, 2016, 9, 1221-1223.	8.3	5
132	Shedding Light on the Role of Phosphorylation in Plant Autophagy. FEBS Letters, 2022, 596, 2172-2185.	2.8	5
133	A rapid and efficient method to study the function of crop plant transporters in Arabidopsis. Protoplasma, 2017, 254, 737-747.	2.1	4
134	MLKs kinases phosphorylate the ESCRT component FREE1 to suppress abscisic acid sensitivity of seedling establishment. Plant, Cell and Environment, 2022, 45, 2004-2018.	5.7	4
135	Analysis of Autophagic Activity Using ATG8 Lipidation Assay in Arabidopsis thaliana. Bio-protocol, 2018, 8, e2880.	0.4	3
136	Using Microscopy Tools to Visualize Autophagosomal Structures in Plant Cells. Methods in Molecular Biology, 2017, 1662, 257-266.	0.9	2
137	Analysis of Prevacuolar Compartment-Mediated Vacuolar Proteins Transport. Methods in Molecular Biology, 2014, 1209, 119-129.	0.9	2
138	Transient Expression of Fluorescent Fusion Proteins in Arabidopsis Protoplasts. Methods in Molecular Biology, 2021, 2200, 157-165.	0.9	2
139	Identification and characterization of unconventional membrane protein trafficking regulators in Arabidopsis: A genetic approach. Journal of Plant Physiology, 2020, 252, 153229.	3.5	0
140	SCAMP, VSR, and Plant Endocytosis. , 2012, , 217-231.		0
141	SH Domain Proteins in Plants: Roles in Signaling Transduction and Membrane Trafficking. , 2015, , 17-33.		Ο
142	Polar Protein Exocytosis: Lessons from Plant Pollen Tube. , 2017, , 107-127.		0
143	Genetic Suppressor Screen Using an Inducible FREE1-RNAi Line to Detect ESCRT Genetic Interactors in Arabidopsis thaliana. Methods in Molecular Biology, 2019, 1998, 273-289.	0.9	0
144	Analysis of Membrane Proteins Transport from Endosomal Compartments to Vacuoles. Methods in Molecular Biology, 2020, 2177, 15-21.	0.9	0