Rollie J Clem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9762730/publications.pdf

Version: 2024-02-01

62
g-index
5664
ng authors

#	Article	IF	Citations
1	Conversion of Bcl-2 to a Bax-like Death Effector by Caspases. Science, 1997, 278, 1966-1968.	12.6	1,028
2	An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. Journal of Virology, 1993, 67, 2168-2174.	3.4	945
3	Prevention of Apoptosis by a Baculovirus Gene During Infection of Insect Cells. Science, 1991, 254, 1388-1390.	12.6	829
4	Modulation of cell death by Bcl-xL through caspase interaction. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 554-559.	7.1	505
5	An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. Journal of Virology, 1994, 68, 2521-2528.	3.4	487
6	Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nature Cell Biology, 2002, 4, 416-424.	10.3	356
7	Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses, 2015, 7, 3741-3767.	3.3	347
8	Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. Journal of Virology, 1993, 67, 3730-3738.	3.4	284
9	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	2.7	154
10	Pathogenomics of <i>Culex quinquefasciatus</i> and Meta-Analysis of Infection Responses to Diverse Pathogens. Science, 2010, 330, 88-90.	12.6	150
11	The Drosophila DIAP1 Protein Is Required to Prevent Accumulation of a Continuously Generated, Processed Form of the Apical Caspase DRONC. Journal of Biological Chemistry, 2002, 277, 49644-49650.	3.4	148
12	Baculoviruses and apoptosis: the good, the bad, and the ugly. Cell Death and Differentiation, 2001, 8, 137-143.	11,2	141
13	Herpesvirus saimiri encodes a functional homolog of the human bcl-2 oncogene. Journal of Virology, 1997, 71, 4118-4122.	3.4	130
14	Sindbis Virus Induces Apoptosis through a Caspase-Dependent, CrmA-Sensitive Pathway. Journal of Virology, 1998, 72, 452-459.	3.4	121
15	INSECT DEFENSES AGAINST VIRUS INFECTION: THE ROLE OF APOPTOSIS. International Reviews of Immunology, 2003, 22, 401-424.	3.3	112
16	c-IAP1 Is Cleaved by Caspases to Produce a Proapoptotic C-terminal Fragment. Journal of Biological Chemistry, 2001, 276, 7602-7608.	3.4	102
17	Baculoviruses and Apoptosis: A Diversity of Genes and Responses. Current Drug Targets, 2007, 8, 1069-1074.	2.1	101
18	Heritable CRISPR/Cas9-Mediated Genome Editing in the Yellow Fever Mosquito, Aedes aegypti. PLoS ONE, 2015, 10, e0122353.	2.5	88

#	Article	IF	CITATIONS
19	Baculoviruses: Sophisticated Pathogens of Insects. PLoS Pathogens, 2013, 9, e1003729.	4.7	83
20	Effects of Manipulating Apoptosis on Sindbis Virus Infection of Aedes aegypti Mosquitoes. Journal of Virology, 2012, 86, 6546-6554.	3.4	81
21	The immune signaling pathways of Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 64-74.	2.7	79
22	Rapid selection against arbovirus-induced apoptosis during infection of a mosquito vector. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1152-61.	7.1	69
23	Defining the core apoptosis pathway in the mosquito disease vector Aedes aegypti: the roles of iap1, ark, dronc, and effector caspases. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 105-113.	4.9	68
24	Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 2007, 38, 331-45.	2.7	67
25	Mechanism of Dronc activation in Drosophila cells. Journal of Cell Science, 2004, 117, 5035-5041.	2.0	62
26	P53-Mediated Rapid Induction of Apoptosis Conveys Resistance to Viral Infection in Drosophila melanogaster. PLoS Pathogens, 2013, 9, e1003137.	4.7	62
27	Silencing of the Baculovirus Op- iap3 Gene by RNA Interference Reveals that It Is Required for Prevention of Apoptosis during Orgyia pseudotsugata M Nucleopolyhedrovirus Infection of Ld652Y Cells. Journal of Virology, 2003, 77, 4481-4488.	3.4	59
28	Lack of involvement of haemocytes in the establishment and spread of infection in Spodoptera frugiperda larvae infected with the baculovirus Autographa californica M nucleopolyhedrovirus by intrahaemocoelic injection. Journal of General Virology, 2002, 83, 1565-1572.	2.9	54
29	Viral IAPs, then and now. Seminars in Cell and Developmental Biology, 2015, 39, 72-79.	5.0	52
30	In Vivo Induction of Apoptosis Correlating with Reduced Infectivity during Baculovirus Infection. Journal of Virology, 2003, 77, 2227-2232.	3.4	50
31	Mutation of juxtamembrane cysteines in the tetraspanin CD81 affects palmitoylation and alters interaction with other proteins at the cell surface. Experimental Cell Research, 2009, 315, 1953-1963.	2.6	44
32	Baculovirus Infection Induces a DNA Damage Response That Is Required for Efficient Viral Replication. Journal of Virology, 2011, 85, 12547-12556.	3.4	44
33	Improving baculovirus resistance to UV inactivation: increased virulence resulting from expression of a DNA repair enzyme. Journal of Invertebrate Pathology, 2003, 82, 50-56.	3.2	39
34	Effects of inducing or inhibiting apoptosis on Sindbis virus replication in mosquito cells. Journal of General Virology, 2008, 89, 2651-2661.	2.9	39
35	Arboviruses and apoptosis: the role of cell death in determining vector competence. Journal of General Virology, 2016, 97, 1033-1036.	2.9	38
36	Ubiquitin protein ligase activity of the anti-apoptotic baculovirus protein Op-IAP3. Virus Research, 2004, 105, 89-96.	2.2	37

#	Article	IF	CITATIONS
37	Sequence Requirements for Hid Binding and Apoptosis Regulation in the Baculovirus Inhibitor of Apoptosis Op-IAP. Journal of Biological Chemistry, 2002, 277, 2454-2462.	3.4	36
38	Infection pattern and transmission potential of chikungunya virus in two New World laboratory-adapted Aedes aegypti strains. Scientific Reports, 2016, 6, 24729.	3.3	36
39	The role of IAP antagonist proteins in the core apoptosis pathway of the mosquito disease vector Aedes aegypti. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 235-248.	4.9	32
40	Cleavage of the Apoptosis Inhibitor DIAP1 by the Apical Caspase DRONC in Both Normal and Apoptotic Drosophila Cells. Journal of Biological Chemistry, 2005, 280, 18683-18688.	3.4	31
41	SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda. Insect Biochemistry and Molecular Biology, 2013, 43, 444-454.	2.7	31
42	Reaching the melting point: Degradative enzymes and protease inhibitors involved in baculovirus infection and dissemination. Virology, 2015, 479-480, 637-649.	2.4	31
43	The baculovirus anti-apoptotic protein Op-IAP does not inhibit Drosophila caspases or apoptosis in Drosophila S2 cells and instead sensitizes S2 cells to virus-induced apoptosis. Virology, 2005, 335, 61-71.	2.4	27
44	Identification and functional characterization of AMVp33, a novel homolog of the baculovirus caspase inhibitor p35 found in Amsacta moorei entomopoxvirus. Virology, 2007, 358, 436-447.	2.4	27
45	Regulation of Programmed Cell Death by Baculoviruses. , 1997, , 237-266.		23
46	Characterization of cDNAs encoding p53 of Bombyx mori and Spodoptera frugiperda. Insect Biochemistry and Molecular Biology, 2011, 41, 613-619.	2.7	21
47	Novel Genetic and Molecular Tools for the Investigation and Control of Dengue Virus Transmission by Mosquitoes. Current Tropical Medicine Reports, 2014, 1, 21-31.	3.7	21
48	Deletions in the Ac-iap1 gene of the baculovirus AcMNPV occur spontaneously during serial passage and confer a cell line-specific replication advantage. Virus Research, 2001, 81, 77-91.	2.2	20
49	A caspase-like decoy molecule enhances the activity of a paralogous caspase in the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 2010, 40, 516-523.	2.7	20
50	Functional characterization of hesp018, a baculovirus-encoded serpin gene. Journal of General Virology, 2015, 96, 1150-1160.	2.9	17
51	Analysis and functional annotation of expressed sequence tags from the fall armyworm Spodoptera frugiperda. BMC Genomics, 2006, 7, 264.	2.8	16
52	Insect Proteases. , 2012, , 346-364.		13
53	Caspase inhibitor P35 is required for the production of robust baculovirus virions in Trichoplusia ni TN-368 cells. Journal of General Virology, 2009, 90, 654-661.	2.9	12
54	A Betabaculovirus-Encoded gp64 Homolog Codes for a Functional Envelope Fusion Protein. Journal of Virology, 2016, 90, 1668-1672.	3.4	12

#	Article	IF	Citations
55	Genome sequence of Perigonia lusca single nucleopolyhedrovirus: insights into the evolution of a nucleotide metabolism enzyme in the family Baculoviridae. Scientific Reports, 2016, 6, 24612.	3.3	11
56	The baculovirus sulfhydryl oxidase Ac92 (P33) interacts with the Spodoptera frugiperda P53 protein and oxidizes it in vitro. Virology, 2013, 447, 197-207.	2.4	10
57	Generating a host range-expanded recombinant baculovirus. Scientific Reports, 2016, 6, 28072.	3.3	9
58	Macrophage cell lines use CD81 in cell growth regulation. In Vitro Cellular and Developmental Biology - Animal, 2009, 45, 213-225.	1.5	8
59	Caspase Inhibitors of the P35 Family Are More Active When Purified from Yeast than Bacteria. PLoS ONE, 2012, 7, e39248.	2.5	7
60	Investigation of Biological Factors Contributing to Individual Variation in Viral Titer after Oral Infection of Aedes aegypti Mosquitoes by Sindbis Virus. Viruses, 2022, 14, 131.	3.3	7
61	Evolution and function of the p35 family of apoptosis inhibitors. Future Virology, 2008, 3, 383-391.	1.8	6
62	Inhibition of dicer activity in lepidopteran and dipteran cells by baculovirus-mediated expression of Flock House virus B2. Scientific Reports, 2019, 9, 14494.	3.3	6
63	Infection of Aedes aegypti Mosquitoes with Midgut-Attenuated Sindbis Virus Reduces, but Does Not Eliminate, Disseminated Infection. Journal of Virology, 2021, 95, e0013621.	3.4	6
64	Effects of Manipulating Fibroblast Growth Factor Expression on Sindbis Virus Replication In Vitro and in Aedes aegypti Mosquitoes. Viruses, 2020, 12, 943.	3.3	2
65	Viral genes that modulate apoptosis. , 1998, , 243-279.		2
66	Apoptosis as a Stress Response. , 1997, , 109-135.		1
67	Kansas science saved by teachers' good sense. Nature, 2001, 410, 865-865.	27.8	0
68	Insect Proteases â~†., 2017, , .		О