

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9761507/publications.pdf

Version: 2024-02-01

323 46,198 110
papers citations h-index

332 332 332 7768
all docs docs citations times ranked citing authors

1934

207

g-index

#	Article	IF	CITATIONS
1	Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology, 2006, 234, 105-126.	3.3	2,230
2	Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 2011, 41, 1-30.	2.3	1,343
3	Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 2005, 233, 103-119.	4.4	1,260
4	A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, 2002, 187, 143-173.	3.3	1,114
5	The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 2011, 301, 241-255.	4.4	1,096
6	Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 2000, 23, 82-92.	1.2	1,030
7	Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 1999, 157, 119-146.	3.3	860
8	Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 2009, 262, 229-245.	3.3	793
9	Phanerozoic crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 2000, 328, 89-113.	2.2	613
10	Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos, 2003, 66, 241-273.	1.4	578
11	Timing, scale and mechanism of the destruction of the North China Craton. Science China Earth Sciences, 2011, 54, 789-797.	5.2	554
12	Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 2006, 246, 336-352.	4.4	537
13	Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 2007, 96, 127-150.	1.4	510
14	Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research, 2008, 163, 351-383.	2.7	501
15	A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence. Lithos, 2006, 89, 89-106.	1.4	483
16	Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos, 2001, 59, 171-198.	1.4	472
17	Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 2005, 24, 523-545.	2.3	471
18	Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters, 2006, 251, 179-198.	4.4	466

#	Article	IF	CITATIONS
19	Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology, 2006, 231, 135-158.	3.3	448
20	Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology, 2005, 221, 127-156.	3.3	439
21	Tracing magma mixing in granite genesis: in situ U–Pb dating and Hf-isotope analysis of zircons. Contributions To Mineralogy and Petrology, 2006, 153, 177-190.	3.1	434
22	Highly fractionated granites: Recognition and research. Science China Earth Sciences, 2017, 60, 1201-1219.	5.2	429
23	Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 2019, 47, 173-195.	11.0	428
24	Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: Implications for subduction-induced delamination. Chemical Geology, 2010, 276, 144-165.	3.3	419
25	The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc, 2007, 16, 156-172.	1.1	409
26	A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geology Reviews, 2003, 23, 125-152.	2.7	390
27	The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 2007, 30, 542-556.	2.3	386
28	Magnesium isotopic composition of the Earth and chondrites. Geochimica Et Cosmochimica Acta, 2010, 74, 4150-4166.	3.9	381
29	Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 2003, 67, 191-204.	1.4	371
30	Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 2009, 268, 298-312.	3.3	367
31	Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 2006, 151, 265-288.	2.7	359
32	Timing of destruction of the North China Craton. Lithos, 2012, 149, 51-60.	1.4	357
33	Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd–Sr isotopic evidence. Chemical Geology, 2005, 214, 99-125.	3.3	355
34	Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 2010, 290, 120-126.	1.5	355
35	Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction?. Chemical Geology, 2009, 266, 364-389.	3.3	351
36	Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 2006, 146, 179-212.	2.7	349

#	Article	IF	CITATIONS
37	Zircon isotope evidence for ≥3.5Ga continental crust in the Yangtze craton of China. Precambrian Research, 2006, 146, 16-34.	2.7	348
38	Zircon U–Pb age and Hf isotope evidence for 3.8ÂGa crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 2006, 252, 56-71.	4.4	345
39	Mesozoic decratonization of the North China block. Geology, 2008, 36, 467.	4.4	341
40	Metamorphic effect on zircon Lu–Hf and U–Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth and Planetary Science Letters, 2005, 240, 378-400.	4.4	333
41	Zircon U–Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 2008, 167, 339-362.	2.7	329
42	U–Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 2006, 241, 581-593.	4.4	319
43	Magmatic record of India-Asia collision. Scientific Reports, 2015, 5, 14289.	3.3	316
44	Zircon U–Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton. Precambrian Research, 2006, 146, 138-164.	2.7	310
45	Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd–Hf isotopic evidence. Precambrian Research, 2008, 167, 125-149.	2.7	310
46	Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 2010, 271, 13-25.	3.3	308
47	Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 2009, 477, 3-19.	2.2	306
48	Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic. Chemical Geology, 2008, 247, 352-383.	3.3	296
49	The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochimica Et Cosmochimica Acta, 2006, 70, 5013-5034.	3.9	291
50	Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chemical Geology, 2003, 196, 107-129.	3.3	278
51	Extension of a newly identified 500Ma metamorphic terrane in North East China: further U–Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics, 2000, 328, 115-130.	2.2	277
52	Late Pan-African magmatism in northeastern China: SHRIMP U–Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Research, 2003, 122, 311-327.	2.7	274
53	Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China. Lithos, 2008, 102, 138-157.	1.4	273
54	U–Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica Et Cosmochimica Acta, 2006, 70, 3743-3761.	3.9	271

#	Article	IF	CITATIONS
55	The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas. Tectonophysics, 2005, 407, 65-80.	2.2	249
56	Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. Journal of Petrology, 2009, 50, 1857-1898.	2.8	237
57	Sr and Nd isotopic compositions of apatite reference materials used in U–Th–Pb geochronology. Chemical Geology, 2014, 385, 35-55.	3.3	234
58	Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-collisional Lithosphere Thinning of the Eastern North China Craton. Journal of Petrology, 2007, 48, 1973-1997.	2.8	227
59	Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment. Chemical Geology, 2008, 257, 1-15.	3.3	219
60	SIMS U–Pb zircon geochronology of porphyry Cu–Au–(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: Magmatic response to early Cretaceous lithospheric extension. Lithos, 2010, 119, 427-438.	1.4	216
61	In situ perovskite Sr–Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chemical Geology, 2009, 264, 24-42.	3.3	214
62	Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chemical Geology, 2007, 242, 155-175.	3.3	210
63	Heterogeneous magnesium isotopic composition of the upper continental crust. Geochimica Et Cosmochimica Acta, 2010, 74, 6867-6884.	3.9	210
64	Geochemical and zircon U–Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite: Extension at 125–100ÂMa and its tectonic significance for South China. Lithos, 2009, 112, 289-305.	1.4	208
65	Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. Numerische Mathematik, 2014, 314, 548-579.	1.4	203
66	The application of zircon cathodoluminescence imaging, Thâ€"Uâ€"Pb chemistry and Uâ€"Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chemical Geology, 2009, 261, 155-171.	3.3	196
67	Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Bulletin of the Geological Society of America, 2007, 119, 1405-1414.	3.3	193
68	India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters, 2011, 307, 479-486.	4.4	192
69	The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 2010, 120, 309-326.	1.4	190
70	Zircon U-Pb ages and tectonic implications of 'Early Paleozoic' granitoids at Yanbian, Jilin Province, northeast China. Island Arc, 2004, 13, 484-505.	1.1	188
71	Multiple sources for the origin of granites: Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochimica Et Cosmochimica Acta, 2004, 68, 4469-4483.	3.9	188
72	Mesozoic, Not Paleoproterozoic SHRIMP U-Pb Zircon Ages of Two Liaoji Granites, Eastern Block, North China Craton. International Geology Review, 2004, 46, 162-176.	2.1	186

#	Article	IF	Citations
73	Geochronology and petrogenesis of the post-orogenic Cu–Ni sulfide-bearing mafic–ultramafic complexes in Jilin Province, NE China. Journal of Asian Earth Sciences, 2004, 23, 781-797.	2.3	180
74	Paleoproterozoic crustal growth in the Western Block of the North China Craton: Evidence from detrital zircon Hf and whole rock Sr-nd isotopic compositions of the Khondalites from the Jining Complex. Numerische Mathematik, 2008, 308, 304-327.	1.4	176
75	Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U〓Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences, 2011, 42, 949-968.	2.3	176
76	Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone?. Chemical Geology, 2012, 328, 168-184.	3.3	174
77	Initial constraints on the timing of granitic magmatism in North Korea using U–Pb zircon geochronology. Chemical Geology, 2007, 238, 232-248.	3.3	172
78	Zircon U–Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting. Journal of Metamorphic Geology, 2007, 25, 991-1009.	3.4	171
79	Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology, 2016, 44, 311-314.	4.4	171
80	Two-billion-year-old volcanism on the Moon from Chang'e-5 basalts. Nature, 2021, 600, 54-58.	27.8	170
81	Early Eocene crustal thickening in southern Tibet: New age and geochemical constraints from the Gangdese batholith. Journal of Asian Earth Sciences, 2012, 53, 82-95.	2.3	160
82	Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions. Science in China Series D: Earth Sciences, 2009, 52, 1345-1358.	0.9	155
83	Neoproterozoic (~900Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 2011, 20, 243-254.	6.0	153
84	Zircon U–Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology, 2008, 253, 222-242.	3.3	152
85	Zircon U–Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos, 2012, 150, 6-25.	1.4	151
86	Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 2014, 208-209, 118-136.	1.4	147
87	Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt–type magmatism in southern Tibet. Geology, 2016, 44, 283-286.	4.4	147
88	Craton destruction and related resources. International Journal of Earth Sciences, 2017, 106, 2233-2257.	1.8	143
89	Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution. Gondwana Research, 2010, 18, 638-652.	6.0	142
90	U-Pb and Hf isotopic study of detrital zircons from the Hutuo group in the Trans-North China Orogen and tectonic implications. Gondwana Research, 2011, 20, 106-121.	6.0	142

#	Article	IF	CITATIONS
91	A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences, 2004, 23, 731-744.	2.3	140
92	Contrasting Lu–Hf and U–Th–Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China. Lithos, 2009, 112, 477-496.	1.4	138
93	Zircon U–Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography. Tectonophysics, 2009, 469, 48-60.	2.2	138
94	Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China Series D: Earth Sciences, 2009, 52, 1240-1261.	0.9	137
95	Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos, 2011, 127, 261-281.	1.4	135
96	Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chemical Geology, 2005, 222, 200-231.	3.3	131
97	Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from east-central Asia. Journal of Earth System Science, 2000, 109, 5-20.	1.3	126
98	Zircon U–Pb and Hf isotopic constraints on petrogenesis of the Cretaceous–Tertiary granites in eastern Karakoram and Ladakh, India. Lithos, 2009, 110, 153-166.	1.4	126
99	Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chemical Geology, 2012, 328, 149-167.	3.3	125
100	U–Pb and Hf isotopic study of detrital zircons from the Lüliang khondalite, North China Craton, and their tectonic implications. Geological Magazine, 2009, 146, 701-716.	1.5	124
101	U–Pb and Hf isotopic study of detrital zircons from the Yejishan Group of the LÃ⅓liang Complex: Constraints on the timing of collision between the Eastern and Western Blocks, North China Craton. Sedimentary Geology, 2011, 236, 129-140.	2.1	124
102	Non-KREEP origin for Chang'e-5 basalts in the Procellarum KREEP Terrane. Nature, 2021, 600, 59-63.	27.8	124
103	Origin of TTG-like rocks from anatexis of ancient lower crust: Geochemical evidence from Neoproterozoic granitoids in South China. Lithos, 2009, 113, 347-368.	1.4	120
104	Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos, 2016, 245, 223-242.	1.4	120
105	Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton. Geochimica Et Cosmochimica Acta, 2011, 75, 3881-3902.	3.9	118
106	Diachronous decratonization of the Sino-Korean craton: Geochemistry of mantle xenoliths from North Korea. Geology, 2010, 38, 799-802.	4.4	117
107	Zircon U–Pb and Hf isotopic study of Mesozoic felsic rocks from eastern Zhejiang, South China: Geochemical contrast between the Yangtze and Cathaysia blocks. Gondwana Research, 2011, 19, 244-259.	6.0	117
108	Late Cretaceousâ€Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of Indiaâ€Asia initial collision. Basin Research, 2012, 24, 520-543.	2.7	116

#	Article	IF	Citations
109	Detrital zircon U–Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research, 2007, 159, 155-177.	2.7	112
110	Neoproterozoic anatexis of Archean lithosphere: Geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 2008, 163, 210-238.	2.7	111
111	In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS. Ore Geology Reviews, 2015, 65, 979-989.	2.7	110
112	Highly fractionated Late Eocene (~ 35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 2016, 240-243, 337-354.	1.4	109
113	Magma mixing controlling the origin of the Early Cretaceous Fangshan granitic pluton, North China Craton: In situ U–Pb age and Sr-, Nd-, Hf- and O-isotope evidence. Lithos, 2010, 120, 421-438.	1.4	108
114	Extreme oxygen isotope signature of meteoric water in magmatic zircon from metagranite in the Sulu orogen, China: Implications for Neoproterozoic rift magmatism. Geochimica Et Cosmochimica Acta, 2008, 72, 3139-3169.	3.9	106
115	Triassic magmatism and its relation to decratonization in the eastern North China Craton. Science in China Series D: Earth Sciences, 2009, 52, 1319-1330.	0.9	105
116	The Â390 Ma high-T metamorphic event in the Chinese Altai: A consequence of ridge-subduction?. Numerische Mathematik, 2010, 310, 1421-1452.	1.4	104
117	High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China craton. Earth and Planetary Science Letters, 2011, 308, 131-140.	4.4	104
118	Precambrian detrital zircons in the Early Paleozoic Chinese Altai: Their provenance and implications for the crustal growth of central Asia. Precambrian Research, 2011, 189, 140-154.	2.7	104
119	Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: Implications for geodynamic change of the accretionary orogenic belt. Gondwana Research, 2012, 22, 681-698.	6.0	104
120	Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U–Pb and Sr–Nd perovskite isotope analysis. Earth and Planetary Science Letters, 2014, 404, 283-295.	4.4	104
121	Multispherical interactions and their effects on the Tibetan Plateau's earth system: a review of the recent researches. National Science Review, 2015, 2, 468-488.	9.5	103
122	Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust–mantle interaction and crustal architecture. Lithos, 2011, 126, 99-114.	1.4	102
123	Thinning and destruction of the cratonic lithosphere: A global perspective. Science China Earth Sciences, 2014, 57, 2878-2890.	5 . 2	102
124	Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos, 2010, 114, 413-422.	1.4	101
125	Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 2020, 352-353, 105319.	1.4	101
126	In-situ SIMS U–Pb dating of phanerozoic apatite with low U and high common Pb. Gondwana Research, 2012, 21, 745-756.	6.0	99

#	Article	IF	Citations
127	Isotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen. Journal of Metamorphic Geology, 2006, 24, 687-702.	3.4	97
128	Detrital zircon evidence from Burma for reorganization of the eastern Himalayan river system. Numerische Mathematik, 2008, 308, 618-638.	1.4	96
129	In situ determination of U–Pb ages and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite Complex, South Africa. Lithos, 2011, 127, 309-322.	1.4	96
130	Neodymium isotopic compositions of the standard monazites used in U Th Pb geochronology. Chemical Geology, 2012, 334, 221-239.	3.3	96
131	Mesoproterozoic U–Pb ages, trace element and Sr–Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: Distinct mantle sources and a widespread 1.1Ga tectonomagmatic event. Chemical Geology, 2013, 353, 48-64.	3.3	96
132	The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet. Lithos, 2014, 210-211, 168-180.	1.4	95
133	Lithium isotopic systematics of A-type granites and their mafic enclaves: Further constraints on the Li isotopic composition of the continental crust. Chemical Geology, 2009, 262, 370-379.	3.3	91
134	Precise and accurate determination of Sm, Nd concentrations and Nd isotopic compositions in geological samples by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2011, 26, 1237.	3.0	91
135	Zircon U–Pb and Hf isotope constraints from the Ailao Shan–Red River shear zone on the tectonic and crustal evolution of southwestern China. Chemical Geology, 2012, 291, 23-37.	3.3	91
136	Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Science China Earth Sciences, 2019, 62, 2005-2016.	5.2	91
137	Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chemical Geology, 2006, 231, 214-235.	3.3	90
138	Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics, 2007, 26, n/a-n/a.	2.8	90
139	Precise U–Pb and Th–Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry. Chemical Geology, 2010, 269, 396-405.	3.3	90
140	Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature Communications, 2016, 7, 11888.	12.8	90
141	Precambrian evolution of the Quanji Block, northeastern margin of Tibet: Insights from zircon U–Pb and Lu–Hf isotope compositions. Journal of Asian Earth Sciences, 2009, 35, 367-376.	2.3	88
142	Fragments of hot and metasomatized mantle lithosphere in Middle Miocene ultrapotassic lavas, southern Tibet. Geology, 2011, 39, 923-926.	4.4	87
143	Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications: Geochemical and Re–Os isotopic results from Ningyuan mantle xenoliths. Chemical Geology, 2012, 291, 186-198.	3.3	87
144	Zircon U–Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahighâ€pressure metamorphic rocks from the Chinese Continental Scientific Drilling project. Journal of Metamorphic Geology, 2007, 25, 873-894.	3.4	85

#	Article	IF	CITATIONS
145	Metasomatized lithospheric mantle for Mesozoic giant gold deposits in the North China craton. Geology, 2020, 48, 169-173.	4.4	85
146	The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion. Geological Society Special Publication, 2010, 338, 117-137.	1.3	84
147	In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 2010, 273, 8-34.	3.3	84
148	Magmatic evolution of the Western Myanmar Arc documented by U–Pb and Hf isotopes in detrital zircon. Tectonophysics, 2014, 612-613, 97-105.	2.2	84
149	Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos, 2014, 205, 127-141.	1.4	82
150	A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China Earth Sciences, 2017, 60, 1655-1663.	5. 2	79
151	Zedong terrane revisited: An intra-oceanic arc within Neo-Tethys or a part of the Asian active continental margin?. Journal of Asian Earth Sciences, 2014, 80, 34-55.	2.3	78
152	In situ U–Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada. Lithos, 2010, 115, 205-222.	1.4	77
153	Generation of early Archaean felsic greenstone volcanic rocks through crustal melting in the Kaapvaal, craton, southern Africa. Earth and Planetary Science Letters, 2013, 381, 188-197.	4.4	77
154	Evaluation of Sr chemical purification technique for natural geological samples using common cation-exchange and Sr-specific extraction chromatographic resin prior to MC-ICP-MS or TIMS measurement. Journal of Analytical Atomic Spectrometry, 2012, 27, 516.	3.0	76
155	Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River. Earth and Planetary Science Letters, 2009, 278, 131-141.	4.4	75
156	Processes controlling highly siderophile element fractionations in xenolithic peridotites and their influence on Os isotopes. Earth and Planetary Science Letters, 2010, 297, 287-297.	4.4	75
157	U–Pb age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya. Earth and Planetary Science Letters, 2011, 304, 356-368.	4.4	75
158	New constraints on the preâ€Permian continental crust growth of Central Asia (West Junggar, China) by U–Pb and Hf isotopic data from detrital zircon. Terra Nova, 2012, 24, 189-198.	2.1	75
159	Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, South Tibet. Lithos, 2016, 245, 93-108.	1.4	75
160	SIMS Pb–Pb and U–Pb age determination of eucrite zircons at<5μm scale and the first 50Ma of the thermal history of Vesta. Geochimica Et Cosmochimica Acta, 2013, 110, 152-175.	3.9	74
161	Heterogeneous potassium isotopic composition of the upper continental crust. Geochimica Et Cosmochimica Acta, 2020, 278, 122-136.	3.9	72
162	Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen. Gondwana Research, 2016, 34, 84-98.	6.0	70

#	Article	IF	Citations
163	In situ U–Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite. Chemical Geology, 2010, 277, 178-195.	3.3	69
164	The compositional variability of eudialyte-group minerals. Mineralogical Magazine, 2011, 75, 87-115.	1.4	69
165	Post-collisional, potassic monzonite–minette complex (Shahewan) in the Qinling Mountains (central) Tj ETQq1 Qinling orogen. Journal of Asian Earth Sciences, 2007, 31, 153-166.	1 0.78431 2.3	4 rgBT /Ove
166	Evaluating the evolution of the Red River system based on in situ Uâ€Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	68
167	U–Pb ages, Sr–Nd- isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopite-picrites of the Alto ParanaÃba Igneous Province, Brazil. Chemical Geology, 2013, 353, 65-82.	3.3	68
168	Late Cretaceous backâ€arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Srâ€Ndâ€Hfâ€O isotopic evidence from Dagze diabases. Journal of Geophysical Research: Solid Earth, 2015, 120, 6159-6181.	3.4	68
169	Plates or plumes in the origin of kimberlites: U/Pb perovskite and Sr-Nd-Hf-Os-C-O isotope constraints from the Superior craton (Canada). Chemical Geology, 2017, 455, 57-83.	3.3	67
170	Precambrian crustal evolution of the eastern North China Craton as revealed by U–Pb ages and Hf isotopes of detrital zircons from the Proterozoic Jing'eryu Formation. Precambrian Research, 2012, 200-203, 184-208.	2.7	64
171	Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome, southern Tibet. Lithos, 2019, 340-341, 71-86.	1.4	64
172	Metamorphic P-T Path of the Southern Jilin Complex: Implications for Tectonic Evolution of the Eastern Block of the North China Craton. International Geology Review, 2003, 45, 1029-1043.	2.1	63
173	Source of highly potassic basalts in northeast China: Evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry. Chemical Geology, 2013, 357, 52-66.	3.3	63
174	Felsic volcanism as a factor driving the end-Permian mass extinction. Science Advances, 2021, 7, eabh1390.	10.3	63
175	Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet. Chemical Geology, 2016, 443, 67-86.	3.3	62
176	First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: Implications for collisional tectonics on early Earth. Earth and Planetary Science Letters, 2021, 558, 116760.	4.4	62
177	Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the Central Asian Orogenic Belt (CAOB): Implications for crust–mantle decoupling. Lithos, 2011, 126, 233-247.	1.4	61
178	Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle. Lithos, 2011, 126, 127-134.	1.4	60
179	Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Terrane Assembly Related to the Paleo-Tethyan Evolution. Journal of Geology, 2012, 120, 531-541.	1.4	60
180	Metasomatic origin of clinopyroxene in Archean mantle xenoliths from Hebi, North China Craton: Trace-element and Sr-isotope constraints. Chemical Geology, 2012, 328, 123-136.	3.3	59

#	Article	IF	Citations
181	Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China. Journal of Asian Earth Sciences, 2016, 117, 184-207.	2.3	59
182	Emplacement age and Sr–Nd isotopic compositions of the Afrikanda alkaline ultramafic complex, Kola Peninsula, Russia. Chemical Geology, 2013, 353, 210-229.	3.3	58
183	Episodic Nb–Ta mineralisation in South China: Constraints from in situ LA–ICP–MS columbite-tantalite U–Pb dating. Ore Geology Reviews, 2019, 105, 71-85.	2.7	58
184	The Xinchang peridotite xenoliths reveal mantle replacement and accretion in southeastern China. Lithos, 2012, 150, 171-187.	1.4	57
185	Monazite behaviour during isothermal decompression in pelitic granulites: a case study from Dinggye, Tibetan Himalaya. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	57
186	Quantitatively Tracking the Elevation of the Tibetan Plateau Since the Cretaceous: Insights From Wholeâ€Rock Sr/Y and La/Yb Ratios. Geophysical Research Letters, 2020, 47, e2020GL089202.	4.0	57
187	Petrology and geochemistry of mantle peridotites from the Kalaymyo and Myitkyina ophiolites (Myanmar): Implications for tectonic settings. Lithos, 2016, 264, 495-508.	1.4	56
188	Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chemical Geology, 2018, 479, 228-240.	3.3	54
189	Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification. Journal of Asian Earth Sciences, 2012, 53, 38-50.	2.3	53
190	The geology of North Korea: An overview. Earth-Science Reviews, 2019, 194, 57-96.	9.1	53
191	Upper Oligocene–Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. Journal of Geology, 2013, 121, 425-444.	1.4	52
192	A Late Cretaceous (ca. 90 Ma) kimberlite event in southern India: Implication for sub-continental lithospheric mantle evolution and diamond exploration. Gondwana Research, 2016, 35, 378-389.	6.0	52
193	Subduction re-initiation at dying ridge of Neo-Tethys: Insights from mafic and metamafic rocks in Lhaze ophiolitic mélange, Yarlung-Tsangbo Suture Zone. Earth and Planetary Science Letters, 2019, 523, 115707.	4.4	52
194	Pervasive Miocene melting of thickened crust from the Lhasa terrane to Himalaya, southern Tibet and its constraint on generation of Himalayan leucogranite. Geochimica Et Cosmochimica Acta, 2020, 278, 137-156.	3.9	52
195	Leucogranite geochronological constraints on the termination of the South Tibetan Detachment in eastern Himalaya. Tectonophysics, 2017, 721, 106-122.	2.2	51
196	Zircon M127 – A Homogeneous Reference Material for <scp>SIMS</scp> U–Pb Geochronology Combined with Hafnium, Oxygen and, Potentially, Lithium Isotope Analysis. Geostandards and Geoanalytical Research, 2016, 40, 457-475.	3.1	49
197	Sr–Nd–Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet: Constraints on its formation setting. Lithos, 2016, 258-259, 133-148.	1.4	49
198	Linking a prolonged Neoâ€Tethyan magmatic arc in <scp>S</scp> outh <scp>A</scp> sia: Zircon Uâ€Pb and Hf isotopic constraints from the Lohit Batholith, <scp>NE I</scp> ndia. Terra Nova, 2013, 25, 453-458.	2.1	48

#	Article	IF	CITATIONS
199	High-precision direct determination of the 87Sr/86Sr isotope ratio of bottled Sr-rich natural mineral drinking water using multiple collector inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 656-660.	2.9	47
200	Provenance of the Liuqu Conglomerate in southern Tibet: A Paleogene erosional record of the Himalayan–Tibetan orogen. Sedimentary Geology, 2010, 231, 74-84.	2.1	46
201	Renewed profile of the Mesozoic magmatism in Korean Peninsula: Regional correlation and broader implication for cratonic destruction in the North China Craton. Science China Earth Sciences, 2016, 59, 2355-2388.	5.2	46
202	Scheelite and coexisting F-rich zoned garnet, vesuvianite, fluorite, and apatite in calc-silicate rocks from the Mogok metamorphic belt, Myanmar: Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization. Journal of Asian Earth Sciences, 2016, 117, 82-106.	2.3	46
203	Emplacement age of leucogranite in the Kampa Dome, southern Tibet. Tectonophysics, 2016, 667, 163-175.	2.2	46
204	In situ UPb age determination and SrNd isotopic analysis of perovskite from the Premier (Cullinan) kimberlite, South Africa. Chemical Geology, 2013, 353, 83-95.	3.3	45
205	U–Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2018, 33, 231-239.	3.0	44
206	Geochronology of the Martian meteorite Zagami revealed by U–Pb ion probe dating of accessory minerals. Earth and Planetary Science Letters, 2013, 374, 156-163.	4.4	43
207	High-Precision Measurements of the < sup > 143 < / sup > Nd/ < sup > 144 < / sup > Nd Isotope Ratio in Certified Reference Materials without Nd and Sm Separation by Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Analytical Letters, 2009, 43, 142-150.	1.8	42
208	PbSL dating of garnet and staurolite: Constraints on the Paleoproterozoic crustal evolution of the Eastern Block, North China Craton. Journal of Asian Earth Sciences, 2011, 42, 142-154.	2.3	41
209	In situ U–Pb dating of bastnaesite by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2014, 29, 1017-1023.	3.0	41
210	Origin and age of zircon-bearing chromitite layers from the Finero phlogopite peridotite (Ivrea–Verbano Zone, Western Alps) and geodynamic consequences. Lithos, 2016, 262, 58-74.	1.4	41
211	Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith. Lithos, 2020, 358-359, 105421.	1.4	41
212	Is Himalayan leucogranite a product by in situ partial melting of the Greater Himalayan Crystalline? A comparative study of leucosome and leucogranite from Nyalam, southern Tibet. Lithos, 2019, 342-343, 542-556.	1.4	39
213	Age of the Siberian craton crust beneath the northern kimberlite fields: Insights to the craton evolution. Gondwana Research, 2016, 39, 365-385.	6.0	38
214	Where are the remnants of a Jurassic ocean in the eastern Mediterranean region?. Gondwana Research, 2016, 33, 63-91.	6.0	38
215	Accurate and precise <i>in situ</i> U–Pb isotope dating of wolframite series minerals <i>via</i> LA-SF-ICP-MS. Journal of Analytical Atomic Spectrometry, 2020, 35, 2191-2203.	3.0	37
216	Re-evaluation of interferences of doubly charged ions of heavy rare earth elements on Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 97, 118-123.	2.9	36

#	Article	IF	CITATIONS
217	U–Pb ages, geochemistry, C–O–Nd–Sr–Hf isotopes and petrogenesis of the CatalĀ£o II carbonatitic complex (Alto ParanaÃba Igneous Province, Brazil): implications for regional-scale heterogeneities in the Brazilian carbonatite associations. International Journal of Earth Sciences, 2017, 106, 1963-1989.	1.8	36
218	Reconsideration of Neo-Tethys evolution constrained from the nature of the Dazhuqu ophiolitic mantle, southern Tibet. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	36
219	Natural Titanite Reference Materials for <i>In Situ</i> Uâ€Pb and Smâ€Nd Isotopic Measurements by <scp>LA</scp> â€(<scp>MC</scp>)â€ <scp>ICP</scp> â€ <scp>MS</scp> . Geostandards and Geoanalytical Research, 2019, 43, 355-384.	3.1	36
220	Two parallel magmatic belts with contrasting isotopic characteristics from southern Tibet to Myanmar: zircon U–Pb and Hf isotopic constraints. Journal of the Geological Society, 2019, 176, 574-587.	2.1	36
221	Decoding Neoarchaean to Palaeoproterozoic tectonothermal events in the Rangnim Massif, North Korea: regional correlation and broader implications. International Geology Review, 2017, 59, 16-28.	2.1	35
222	A  hidden' 18O-enriched reservoir in the sub-arc mantle. Scientific Reports, 2014, 4, 4232.	3.3	34
223	â€~Premier' evidence for prolonged kimberlite pipe formation and its influence on diamond transport from deep Earth. Geology, 2018, 46, 843-846.	4.4	34
224	U-Pb geochronology and Sr-Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola province. Petrology, 2014, 22, 462-479.	0.9	33
225	Detrital zircon U–Pb age and Hf isotopic composition from foreland sediments of the Assam Basin, NE India: Constraints on sediment provenance and tectonics of the Eastern Himalaya. Journal of Asian Earth Sciences, 2015, 111, 254-267.	2.3	33
226	Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Province, southeast China: A crystal mush origin with mantle input. Lithos, 2018, 296-299, 482-495.	1.4	32
227	<scp>GZ</scp> 7 and <scp>GZ</scp> 8 – Two Zircon Reference Materials for <scp>SIMS</scp> Uâ€Pb Geochronology. Geostandards and Geoanalytical Research, 2018, 42, 431-457.	3.1	32
228	In Situ Uâ€Thâ€Pb Dating and Srâ€Nd Isotope Analysis of Bastnäte by LAâ€(MC)â€ICPâ€MS. Geostandards and Geoanalytical Research, 2019, 43, 543-565.	3.1	32
229	Early Evolution of Himalayan Orogenic Belt and Generation of Middle Eocene Magmatism: Constraint From Haweng Granodiorite Porphyry in the Tethyan Himalaya. Frontiers in Earth Science, 2020, 8, .	1.8	32
230	Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: Implications for oblique continental collision. Gondwana Research, 2020, 88, 296-332.	6.0	32
231	In situ U–Pb, Sr and Nd isotopic analysis of loparite by LA-(MC)-ICP-MS. Chemical Geology, 2011, 280, 191-199.	3.3	31
232	Extreme Mg and Zn isotope fractionation recorded in the Himalayan leucogranites. Geochimica Et Cosmochimica Acta, 2020, 278, 305-321.	3.9	31
233	Geochronology and Tectonic Implications of the "Proterozoic" Seluohe Group at the Northern Margin of the North China Craton. International Geology Review, 2008, 50, 135-153.	2.1	30
234	Palaeomagnetic constraints from granodioritic plutons (Jiaodong Peninsula): New insights on Late Mesozoic continental extension in Eastern Asia. Physics of the Earth and Planetary Interiors, 2011, 187, 276-291.	1.9	30

#	Article	IF	Citations
235	Ultra-refractory mantle domains in the Luqu ophiolite (Tibet): Petrology and tectonic setting. Lithos, 2017, 286-287, 252-263.	1.4	30
236	Synchronous Periadriatic magmatism in the Western and Central Alps in the absence of slab breakoff. Terra Nova, 2019, 31, 120-128.	2.1	29
237	Juvenile subcontinental lithospheric mantle beneath the eastern part of the Central Asian Orogenic Belt. Chemical Geology, 2012, 328, 109-122.	3.3	27
238	Early cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate. Journal of Geophysical Research: Solid Earth, 2017, 122, 5748-5765.	3.4	27
239	Diagenetic xenotime dating to constrain the initial depositional time of the Yan-Liao Rift. Precambrian Research, 2015, 271, 20-32.	2.7	26
240	Limited recycling of crustal osmium in forearc mantle during slab dehydration. Geology, 2018, 46, 239-242.	4.4	26
241	Big insights from tiny peridotites: Evidence for persistence of Precambrian lithosphere beneath the eastern North China Craton. Tectonophysics, 2015, 650, 104-112.	2.2	25
242	Mesozoic tectonics in the Eastern Block of the North China Craton: implications for subduction of the Pacific plate beneath the Eurasian plate. Geological Society Special Publication, 2007, 280, 171-188.	1.3	24
243	Zr and REE mineralization in sodic lujavrite from the Saima alkaline complex, northeastern China: A mineralogical study and comparison with potassic rocks. Lithos, 2016, 262, 232-246.	1.4	24
244	Variably evolved gabbroic intrusions within the Xigaze ophiolite (Tibet): new insights into the origin of ophiolite diversity. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	24
245	High precision analysis of Mg isotopic composition in olivine by laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2011, 26, 1773.	3.0	23
246	Age assignment and geological significance of the "Budate Group―in the Hailar Basin. Science China Earth Sciences, 2013, 56, 970-979.	5.2	23
247	Intra-oceanic arc: Its formation and evolution. Acta Petrologica Sinica, 2019, 35, 1-15.	0.8	23
248	Comparative Sr–Nd–Hf–Os–Pb isotope systematics of xenolithic peridotites from Yangyuan, North China Craton: Additional evidence for a Paleoproterozoic age. Chemical Geology, 2012, 332-333, 1-14.	3.3	22
249	In-situ U–Pb dating and Nd isotopic analysis of perovskite from a rodingite blackwall associated with UHP serpentinite from southwestern Tianshan, China. Chemical Geology, 2016, 431, 67-82.	3.3	22
250	Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. Bulletin of the Geological Society of America, 2019, 131, 1385-1408.	3.3	22
251	Mesoproterozoic emplacement and enriched mantle derivation of the Racherla alkali syenite, Palaeo-Mesoproterozoic Cuddapah Basin, southern India: insights from in situ Sr–Nd isotopic analysis on apatite. Geological Society Special Publication, 2012, 365, 185-195.	1.3	21
252	Early Eocene sedimentary recycling in the Kailas area, southwestern Tibet: Implications for the initial India–Asia collision. Sedimentary Geology, 2015, 315, 1-13.	2.1	21

#	Article	IF	Citations
253	Emplacement age and isotopic composition of the Prairie Lake carbonatite complex, Northwestern Ontario, Canada. Geological Magazine, 2017, 154, 217-236.	1.5	21
254	Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British) Tj ETQq0 0 0	rgBŢ/Ove	erlock 10 Tf 50
255	Mesozoic decratonization of the North China Craton by lithospheric delamination: Evidence from Sr-Nd-Hf-Os isotopes of mantle xenoliths of Cenozoic alkaline basalts in Yangyuan, Hebei Province, China. Journal of Asian Earth Sciences, 2018, 160, 396-407.	2.3	21
256	Early Miocene rapid exhumation in southern Tibet: Insights from P–T–t–D–magmatism path of Yardoi dome. Lithos, 2018, 304-307, 38-56.	1.4	20
257	Evidence of sub-continental lithospheric mantle sources and open-system crystallization processes from in-situ U–Pb ages and Nd–Sr–Hf isotope geochemistry of the Cretaceous ultramafic-alkaline-(carbonatite) intrusions from the Shillong Plateau, north-eastern India. Lithos, 2019. 330-331. 108-119.	1.4	20
258	An origin of ultraslow spreading ridges for the Yarlung-Tsangpo ophiolites. Fundamental Research, 2022, 2, 74-83.	3.3	20
259	A straightforward protocol for Hf purification by single step anion-exchange chromatography and isotopic analysis by MC-ICP-MS applied to geological reference materials and zircon standards. International Journal of Mass Spectrometry, 2011, 299, 47-52.	1.5	19
260	Petrology, geochemistry and ReOs isotopes of peridotite xenoliths from Maguan, Yunnan Province: Implications for the Cenozoic mantle replacement in southwestern China. Lithos, 2013, 168-169, 1-14.	1.4	19
261	Alpine Tethys closure as revealed by amphibole-rich mafic and ultramafic rocks from the Adamello and the Bergell intrusions (Central Alps). Journal of the Geological Society, 2014, 171, 793-799.	2.1	19
262	Magnesium Isotope Composition of Subduction Zone Fluids as Constrained by Jadeitites From Myanmar. Journal of Geophysical Research: Solid Earth, 2018, 123, 7566-7585.	3.4	19
263	Crustal evolution of the South Mayo Trough, western Ireland, based on U–Pb ages and Hf–O isotopes in detrital zircons. Journal of the Geological Society, 2012, 169, 681-689.	2.1	18
264	Mesoproterozoic (\sim 1.32ÂGa) modification of lithospheric mantle beneath the North China craton caused by break-up of the Columbia supercontinent. Precambrian Research, 2020, 342, 105674.	2.7	18
265	From extension to tectonic inversion: Mid-Cretaceous onset of Andean-type orogeny in the Lhasa block and early topographic growth of Tibet. Bulletin of the Geological Society of America, 2020, 132, 2432-2454.	3.3	18
266	Are there any 3.8Ga rock at Anshan in the North China Craton?. Precambrian Research, 2009, 172, 361-363.	2.7	17
267	Origin of the Triassic Lincang granites in the southeastern Tibetan Plateau: Crystallization from crystal mush. Lithos, 2020, 360-361, 105452.	1.4	17
268	Rapid screening of Zr-containing particles from Chang'e-5 lunar soil samples for isotope geochronology: Technical roadmap for future study. Geoscience Frontiers, 2022, 13, 101367.	8.4	17
269	Formation age and metasomatism of the sub-continental lithospheric mantle beneath southeast China: Sr-Nd-Hf-Os isotopes of Mingxi mantle xenoliths. Journal of Asian Earth Sciences, 2017, 145, 591-604.	2.3	16
270	U-Pb isotopic dating of cassiterite: Development of reference materials and in situ applications by LA-SF-ICP-MS. Chemical Geology, 2022, 593, 120754.	3.3	16

#	Article	IF	Citations
271	High-precision simultaneous determination of 147Sm/144Nd and 143Nd/144Nd ratios in Sm–Nd mixtures using multi-collector inductively coupled plasma mass spectrometry and its comparison to isotope dilution analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 79-80, 82-87.	2.9	15
272	Initiation of the intra-cratonic Cuddapah basin: Evidence from Paleoproterozoic (1995Ma) anorogenic porphyritic granite in Eastern Dharwar Craton basement. Journal of Asian Earth Sciences, 2014, 79, 235-245.	2.3	15
273	Evolution of mantle peridotites from the Luobusa ophiolite in the Tibetan Plateau: Sr-Nd-Hf-Os isotope constraints. Lithos, 2020, 362-363, 105477.	1.4	15
274	Tectonic Controls on Block Rotation and Sheeted Sill Emplacement in the Xigaze Ophiolite (Tibet): The Construction Mode of Slowâ€Spreading and Ultraslowâ€Spreading Oceanic Crusts. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009297.	2.5	15
275	The Xigaze ophiolite: fossil ultraslow-spreading ocean lithosphere in the Tibetan Plateau. Journal of the Geological Society, 2021, 178, .	2.1	15
276	Growth of Asia in the Phanerozoic â€" Nd Isotopic Evidence. Gondwana Research, 2001, 4, 640-642.	6.0	14
277	Tectonic setting of the Helong Block: Implications for the northern boundary of the eastern North China Craton. Science in China Series D: Earth Sciences, 2005, 48, 1599-1612.	0.9	14
278	Hf isotopic evidence for Paleoarchean (> 3.5 Ga) crustal components in the Korean Peninsula. Geosciences Journal, 2007, 11, 271-277.	1.2	13
279	The Langjiexue Group is an in situ sedimentary sequence rather than an exotic block: Constraints from coeval Upper Triassic strata of the Tethys Himalaya (Qulonggongba Formation). Science China Earth Sciences, 2019, 62, 783-797.	5.2	13
280	Zircon U-Pb geochronology and Hf isotopes of granitic rocks and river sands in the Nyingchi region, Tibet: Constraints on evolution of the deep crust beneath the southeast Lhasa terrane. Journal of Asian Earth Sciences, 2017, 145, 613-625.	2.3	12
281	Natural Clinopyroxene Reference Materials for in situ Sr Isotopic Analysis via LA-MC-ICP-MS. Frontiers in Chemistry, 2020, 8, 594316.	3.6	12
282	Silurian A-type metaquartz-syenite to -granite in the Eastern Anatolia: Implications for Late Ordovician-Silurian rifting at the northern margin of Gondwana. Gondwana Research, 2021, 91, 1-17.	6.0	12
283	In-sequence buoyancy extrusion of the Himalayan Metamorphic Core, central Nepal: Constraints from monazite petrochronology and thermobarometry. Journal of Asian Earth Sciences, 2020, 199, 104406.	2.3	12
284	The mechanisms of fractional crystallization for the Himalayan leucogranites. Acta Petrologica Sinica, 2020, 36, 3551-3571.	0.8	12
285	Wadeite (K 2 ZrSi 3 O 9), an alkali-zirconosilicate from the Saima agpaitic rocks in northeastern China: Its origin and response to multi-stage activities of alkaline fluids. Lithos, 2015, 224-225, 126-142.	1.4	11
286	In situ determination of hafnium isotopes from rutile using LA-MC-ICP-MS. Science China Earth Sciences, 2015, 58, 2134-2144.	5.2	11
287	Eocene Metamorphism and Anatexis in the Kathmandu Klippe, Central Nepal: Implications for Early Crustal Thickening and Initial Rise of the Himalaya. Tectonics, 2021, 40, e2020TC006532.	2.8	11
288	Timing of Granite Emplacement in the Central Asian Orogenic Belt of Northeastern China. Gondwana Research, 2001, 4, 823-824.	6.0	10

#	Article	IF	CITATIONS
289	Composition of the lithospheric mantle in the northern part of Siberian craton: Constraints from peridotites in the Obnazhennaya kimberlite. Lithos, 2017, 294-295, 383-396.	1.4	10
290	Testing oceanic crust–mantle decoupling by Sr–Nd–Hf–Os isotopes of Neo-Tethyan ophiolites. Lithos, 2020, 376-377, 105757.	1.4	9
291	Highâ€Precision Srâ€Ndâ€Hfâ€Pb Isotopic Composition of Chinese Geological Standard Glass Reference Materials CGSGâ€1, CGSGâ€2, CGSGâ€4 and CGSGâ€5 by MCâ€ICPâ€MS and TIMS. Geostandards and Geoanaly Research, 2020, 44, 567-579.	ti eal	9
292	Natural Allanite Reference Materials for <i>In Situ</i> Uâ€Thâ€Pb and Smâ€Nd Isotopic Measurements by LAâ€(MC)â€ICPâ€MS. Geostandards and Geoanalytical Research, 2022, 46, 169-203.	3.1	9
293	"Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, east China: Geochronological, geochemical and Nd–Sr isotopic evidence―– Reply. Chemical Geology, 2006, 235, 186-190.	3.3	8
294	Rinkite-(Ce) in the nepheline syenite pegmatite from the Saima alkaline complex, northeastern China: Its occurrence, alteration, and implications for REE mineralization. Canadian Mineralogist, 2019, 57, 903-924.	1.0	8
295	Matrix effects during in situ U-Pb dating of perovskite with variable crystal structure: Evidence from the Tazheran Massif, Russia. Chemical Geology, 2022, 589, 120685.	3.3	8
296	<i>In situ</i> U–Pb geochronology of vesuvianite by LA-SF-ICP-MS. Journal of Analytical Atomic Spectrometry, 2022, 37, 69-81.	3.0	7
297	Contrasting source domains for the Phanerozoic granitoids in South Korea revealed by zircon Hf isotopic signatures. Geosciences Journal, 2016, 20, 585-596.	1.2	6
298	Petrogenesis of the Main Range and Eastern Province granites in eastern Myanmar: New insights from zircon U–Pb ages and Sr–Nd isotopes. Lithos, 2021, 382-383, 105895.	1.4	6
299	Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca) Tj ETQq1 1 0.784314 i	rgBT /Ove	rlock 10 Tf
300	Accurate measurement of neodymium isotopic composition using Neptune MC-ICP-MS. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 94-98.	0.4	5
301	Recycling of ancient sub-oceanic mantle in the Neo-Tethyan asthenosphere: Evidence from major and trace elements and Hf–Os isotopes of the Kop Mountain ophiolite, NE Turkey. Geochimica Et Cosmochimica Acta, 2021, 311, 43-58.	3.9	5
302	Zircon U-Pb age and Hf isotope of intrusive rocks from the Yawa area in the west part of southern Lhasa terrane, Tibet. Acta Petrologica Sinica, 2019, 35, 423-438.	0.8	5
303	The lithosphere structure of Northeast China. Frontiers of Earth Science, 2007, 1, 165-171.	0.5	4
304	A Palaeoproterozoic basement beneath the Rangnim Massif revealed by the in situ U–Pb ages and Hf isotopes of xenocrystic zircons from Triassic kimberlites of North Korea. Geological Magazine, 2019, 156, 1657-1667.	1.5	4
305	Heterogeneous sub-ridge mantle of the Neo-Tethys: Constraints from Re-Os isotope and HSE compositions of the Xigaze ophiolites. Lithos, 2020, 378-379, 105819.	1.4	4
306	In situ zircon U Pb dating of Jurassic granitoids in North Korea and its tectonic implications. Lithos, 2021, 398-399, 106346.	1.4	4

#	Article	IF	Citations
307	Multistage magmatism recorded in a single gneiss dome: Insights from the Lhagoi Kangri leucogranites, Himalayan orogen. Lithos, 2021, 398-399, 106222.	1.4	4
308	Newly discovered Early Carboniferous and Late Permian magmatic rocks in eastern Myanmar: Implications for the tectonic evolution of the eastern Paleo-Tethys. Journal of Asian Earth Sciences, 2022, 227, 105093.	2.3	4
309	Mesozoic crustal growth in Mainland Southeast Asia: Zircon U-Pb and Hf isotopic evidence from the Late Cretaceous Luyingtang granitic pluton in the northernmost SE Asian granite Province, SW China. Journal of Asian Earth Sciences, 2020, 190, 104151.	2.3	3
310	Identification of Forearc Sediments in the Milin-Zedong Region and Their Constraints on Tectonomagmatic Evolution of the Gangdese Arc, Southern Tibet. Lithosphere, 2020, 2020, .	1.4	3
311	Precise and accurate Lu–Hf isotope analysis of columbite-group minerals by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2021, 36, 1643-1656.	3.0	3
312	Was there an exchange of detritus between the northern and southern Black Sea terranes in the Mesozoic-early Cenozoic?. Gondwana Research, 2021, , .	6.0	3
313	The heterogeneous mantle massif in south Tibetan ophiolites and its implication for the tectonic evolution of Neo-Tethys. Lithos, 2022, 424-425, 106761.	1.4	3
314	Reply to comment on "Geochronology of the Martian meteorite Zagami revealed by U–Pb ion probe dating of accessory minerals― Earth and Planetary Science Letters, 2014, 385, 218-220.	4.4	2
315	<i>In situ</i> sequential U–Pb age and Sm–Nd systematics measurements of natural LREE-enriched minerals using single laser ablation multi-collector inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2020, 35, 510-517.	3.0	2
316	Reviews on the Paleozoic-Mesozoic granitoids and sedimentary rocks in North Korea. Journal of the Geological Society of Korea, 2021, 57, 523-544.	0.7	2
317	Granites: From felsic rocks to the recorder of continental evolution. Science China Earth Sciences, 2015, 58, 2353-2354.	5.2	1
318	Petrogenesis of the Late Triassic Mengsong strongly peraluminous granites in the southeastern Tibetan Plateau: highly fractionated from crystal mush. International Geology Review, 2020, , 1-18.	2.1	1
319	Foundation of the Institute of Geology, Chinese Academy of Sciences: Inheritation and continuation of the Geological Survey of China. Acta Petrologica Sinica, 2021, 37, 284-316.	0.8	1
320	Asian Orogeny And Continental Tectonics From Geochemical Perspectives: A Special Issue in Memory of Professor Bor-ming Jahn for His Scientific Contributions and Service to JAES. Journal of Asian Earth Sciences, 2017, 145, 297.	2.3	0
321	Asian Orogeny And Continental Tectonics From Geochemical Perspectives: A Special Issue in Memory of Professor Bor-ming Jahn for His Scientific Contributions and Service to JAES (Part 2). Journal of Asian Earth Sciences, 2018, 167, 1.	2.3	0
322	Reply to comment by on the article "Composition of the lithospheric mantle in the northern part of Siberian craton: Constraints from peridotites in the Obnazhennaya kimberlite―by , Lithos 294, 383–396. Lithos, 2018, 314-315, 688-689.	1.4	0
323	é«̃çµæ•度 <bold>-</bold> 啿ޥæ"¶æ•̃ <bold>LA-SF-ICP-MS& SCIENTIA SINICA Terrae, 2022, 52, 1375-1390.</bold>	;lt;/bold&a	mp;gt;原ä