## Manfang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9756036/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | MnO2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon<br>nanospheres as the sulfur host of advanced lithium-sulfur batteries. Chemical Engineering Journal,<br>2018, 335, 831-842.                                | 12.7 | 157       |
| 2  | Honeycombâ€like Nitrogen and Sulfur Dualâ€Doped Hierarchical Porous Biomassâ€Derived Carbon for<br>Lithium–Sulfur Batteries. ChemSusChem, 2017, 10, 1803-1812.                                                                                     | 6.8  | 143       |
| 3  | Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chemical Engineering Journal, 2019, 355, 478-486.                                                  | 12.7 | 124       |
| 4  | NiMoO <sub>4</sub> Nanosheets Anchored on NS Doped Carbon Clothes with Hierarchical<br>Structure as a Bidirectional Catalyst toward Accelerating Polysulfides Conversion for Lïi£¿S Battery.<br>Advanced Functional Materials, 2021, 31, 2101285. | 14.9 | 119       |
| 5  | Hierarchical porous carbon modified with ionic surfactants as efficient sulfur hosts for the high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2017, 313, 404-414.                                                          | 12.7 | 93        |
| 6  | Kinetically elevated redox conversion of polysulfides of lithium-sulfur battery using a separator<br>modified with transition metals coordinated g‑C3N4 with carbon-conjugated. Chemical Engineering<br>Journal, 2020, 385, 123905.                | 12.7 | 93        |
| 7  | Multifunctional Heterostructures for Polysulfide Suppression in Highâ€Performance Lithiumâ€Sulfur<br>Cathode. Small, 2018, 14, e1803134.                                                                                                           | 10.0 | 77        |
| 8  | MoS <sub>2</sub> -Coated N-doped Mesoporous Carbon Spherical Composite Cathode and<br>CNT/Chitosan Modified Separator for Advanced Lithium Sulfur Batteries. ACS Sustainable Chemistry<br>and Engineering, 2018, 6, 16828-16837.                   | 6.7  | 72        |
| 9  | Suppressing the Polysulfide Shuttle Effect by Heteroatom-Doping for High-Performance<br>Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 7545-7557.                                                                   | 6.7  | 70        |
| 10 | Preparation and performances of the modified gel composite electrolyte for application of quasi-solid-state lithium sulfur battery. Chemical Engineering Journal, 2020, 389, 124300.                                                               | 12.7 | 60        |
| 11 | Architecture and Performance of the Novel Sulfur Host Material Based on<br>Ti <sub>2</sub> O <sub>3</sub> Microspheres for Lithium–Sulfur Batteries. ACS Applied Materials<br>& Interfaces, 2019, 11, 22439-22448.                                 | 8.0  | 54        |
| 12 | ZnFe <sub>2</sub> O <sub>4</sub> –Ni <sub>5</sub> P <sub>4</sub> Mott–Schottky Heterojunctions to<br>Promote Kinetics for Advanced Li–S Batteries. ACS Applied Materials & Interfaces, 2022, 14,<br>23546-23557.                                   | 8.0  | 53        |
| 13 | Enhancing the performance of lithium–sulfur batteries by anchoring polar polymers on the surface of sulfur host materials. Journal of Materials Chemistry A, 2016, 4, 16148-16156.                                                                 | 10.3 | 52        |
| 14 | Perovskite-type La <sub>0.56</sub> Li <sub>0.33</sub> TiO <sub>3</sub> as an effective polysulfide<br>promoter for stable lithium–sulfur batteries in lean electrolyte conditions. Journal of Materials<br>Chemistry A, 2019, 7, 10293-10302.      | 10.3 | 50        |
| 15 | Carbon-Coated Yttria Hollow Spheres as Both Sulfur Immobilizer and Catalyst of Polysulfides<br>Conversion in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42104-42113.                                                  | 8.0  | 45        |
| 16 | Synergetic Effects of Multifunctional Composites with More Efficient Polysulfide Immobilization and<br>Ultrahigh Sulfur Content in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10,<br>13562-13572.                         | 8.0  | 40        |
| 17 | Flower-like ZnO modified with BiOI nanoparticles as adsorption/catalytic bifunctional hosts for lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 51, 21-29.                                                                            | 12.9 | 30        |
| 18 | In-situ synthesis of highly graphitized and Fe/N enriched carbon tubes as catalytic mediums for promoting multi-step conversion of lithium polysulfides. Carbon, 2022, 192, 418-428.                                                               | 10.3 | 28        |

MANFANG CHEN

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Porous NiCo <sub>2</sub> S <sub>4</sub> Nanoneedle Arrays with Highly Efficient Electrocatalysis<br>Anchored on Carbon Cloths as Self-Supported Hosts for High-Loading Li–S Batteries. ACS Applied<br>Materials & Interfaces, 2020, 12, 57975-57986. | 8.0  | 25        |
| 20 | Photovoltaic Monocrystalline Silicon Wasteâ€Derived Hierarchical Silicon/Flake Graphite/Carbon<br>Composite as Lowâ€Cost and Highâ€Capacity Anode for Lithiumâ€Ion Batteries. ChemistrySelect, 2017, 2,<br>3479-3489.                                | 1.5  | 22        |
| 21 | Double bond effects induced by iron selenide as immobilized homogenous catalyst for efficient polysulfides capture. Chemical Engineering Journal, 2021, 421, 129770.                                                                                 | 12.7 | 18        |
| 22 | High-density/efficient surface active sites on modified separators to boost Li-S batteries via atomic Co3+-Se termination. Nano Research, 2022, 15, 7199-7208.                                                                                       | 10.4 | 18        |
| 23 | Manganese Dioxide/Ant-Nest-Like Hierarchical Porous Carbon Composite with Robust Supercapacitive<br>Performances. ACS Sustainable Chemistry and Engineering, 2018, 6, 7362-7371.                                                                     | 6.7  | 17        |
| 24 | A heterogeneous FeP-CoP electrocatalyst for expediting sulfur redox in high-specific-energy<br>lithium-sulfur batteries. Electrochimica Acta, 2021, 397, 139275.                                                                                     | 5.2  | 17        |
| 25 | Creating anion defects on hollow CoxNi1-xO concave with dual binding sites as high-efficiency sulfur reduction reaction catalyst. Chemical Engineering Journal, 2022, 427, 132024.                                                                   | 12.7 | 13        |
| 26 | Engineering a TiNb <sub>2</sub> O <sub>7</sub> -Based Electrocatalyst on a Flexible Self-Supporting<br>Sulfur Cathode for Promoting Li-S Battery Performance. ACS Applied Materials & Interfaces, 2022,<br>14, 1157-1168.                            | 8.0  | 12        |
| 27 | Li <sub>2</sub> S In Situ Grown on Three-Dimensional Porous Carbon Architecture with Electron/Ion<br>Channels and Dual Active Sites as Cathodes of Li–S Batteries. ACS Applied Materials & Interfaces,<br>2021, 13, 32968-32977.                     | 8.0  | 11        |
| 28 | Multiple roles of titanium carbide in performance boosting: Mediator, anchor and electrocatalyst for polysulfides redox regulation. Chemical Engineering Journal, 2021, 426, 130744.                                                                 | 12.7 | 11        |
| 29 | Intertwined Nitrogenâ€Doped Carbon Nanotube Microsphere as Polysulfide Grappler for<br>Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 1466-1474.                                                                             | 3.4  | 10        |
| 30 | Unveiling the Role and Mechanism of Nb Doping and In Situ Carbon Coating on Improving Lithiumâ€Ion<br>Storage Characteristics of Rodâ€Like Morphology FeF <sub>3</sub> ·0.33H <sub>2</sub> O. Small, 2022, 18,<br>e2105193.                          | 10.0 | 10        |
| 31 | The preparation and performances of lithium sulfide (Li2S)-oriented cathode composite via carbothermic reduction. Journal of Alloys and Compounds, 2020, 835, 155421.                                                                                | 5.5  | 9         |
| 32 | Hollow urchin-like Al-doped α-MnO2â^'x as advanced sulfur host for high-performance lithium-sulfur<br>batteries. Materials Letters, 2021, 285, 129135.                                                                                               | 2.6  | 9         |
| 33 | Atomically Dispersed and O, N-Coordinated Mn-Based Catalyst for Promoting the Conversion of<br>Polysulfides in Li <sub>2</sub> S-Based Li–S Battery. ACS Applied Materials & Interfaces, 2021, 13,<br>54113-54123.                                   | 8.0  | 9         |
| 34 | Enhancing Reaction Kinetics of Sulfur-Containing Species in Li-S Batteries by Quantum Dot-Level Tin<br>Oxide Hydroxide Catalysts. ACS Applied Energy Materials, 2021, 4, 4935-4944.                                                                  | 5.1  | 6         |
| 35 | Titanium Glycolate Nanorods with Unsaturated Sites as Multifunctional Layers for Advanced<br>Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 3670-3680.                                                                             | 5.1  | 5         |
| 36 | Core–Shell Structure S@PPy/CB with High Electroconductibility to Effective Confinement<br>Polysulfide Shuttle Effect for Advanced Lithium–Sulfur Batteries. Energy & Fuels, 2021, 35,<br>10181-10189.                                                | 5.1  | 5         |