
Ya-Nan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/975394/publications.pdf Version: 2024-02-01

ΥΛ-ΝΛΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles. Gene, 2014, 536, 279-286.	2.2	156
2	Distinct Expression Profiles and Different Functions of Odorant Binding Proteins in Nilaparvata lugens Stål. PLoS ONE, 2011, 6, e28921.	2.5	151
3	Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker). PLoS ONE, 2013, 8, e69715.	2.5	120
4	Candidate chemosensory genes identified in Colaphellus bowringi by antennal transcriptome analysis. BMC Genomics, 2015, 16, 1028.	2.8	90
5	Antennal Transcriptome Analysis of Odorant Reception Genes in the Red Turpentine Beetle (RTB), Dendroctonus valens. PLoS ONE, 2015, 10, e0125159.	2.5	81
6	Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury). PLoS ONE, 2016, 11, e0164729.	2.5	70
7	Large number of putative chemoreception and pheromone biosynthesis genes revealed by analyzing transcriptome from ovipositor-pheromone glands of Chilo suppressalis. Scientific Reports, 2015, 5, 7888.	3.3	69
8	Molecular characterization and evolution of a chemosensory receptor gene family in three notorious rice planthoppers, <scp><i>Nilaparvata lugens</i></scp> , <scp><i>Sogatella furcifera</i></scp> and <scp><i>Laodelphax striatellus</i></scp> , based on genome and transcriptome analyses. Pest Management Science, 2018, 74, 2156-2167.	3.4	54
9	Putative Pathway of Sex Pheromone Biosynthesis and Degradation by Expression Patterns of Genes Identified from Female Pheromone Gland and Adult Antenna of Sesamia inferens (Walker). Journal of Chemical Ecology, 2014, 40, 439-451.	1.8	52
10	Different roles suggested by sex-biased expression and pheromone binding affinity among three pheromone binding proteins in the pink rice borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae). Journal of Insect Physiology, 2014, 66, 71-79.	2.0	51
11	Different binding properties of two general-odorant binding proteins in Athetis lepigone with sex pheromones, host plant volatiles and insecticides. Pesticide Biochemistry and Physiology, 2020, 164, 173-182.	3.6	50
12	The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites. Frontiers in Physiology, 2016, 7, 201.	2.8	49
13	Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura. PLoS ONE, 2015, 10, e0140019.	2.5	46
14	FUNCTIONAL CHARACTERIZATION OF AN ANTENNAL ESTERASE FROM THE NOCTUID MOTH, <i>Spodoptera exigua</i> . Archives of Insect Biochemistry and Physiology, 2014, 86, 85-99.	1.5	44
15	An antenna-biased carboxylesterase is specifically active to plant volatiles in Spodoptera exigua. Pesticide Biochemistry and Physiology, 2015, 123, 93-100.	3.6	43
16	Molecular identification and expression patterns of odorant binding protein and chemosensory protein genes in <i>Athetis lepigone</i> (Lepidoptera: Noctuidae). PeerJ, 2017, 5, e3157.	2.0	37
17	Identification and tissue expression profile of genes from three chemoreceptor families in an urban pest, Periplaneta americana. Scientific Reports, 2016, 6, 27495.	3.3	32
18	Reproductive switching analysis of Daphnia similoides between sexual female and parthenogenetic female by transcriptome comparison. Scientific Reports, 2016, 6, 34241.	3.3	31

YA-NAN ZHANG

#	Article	IF	CITATIONS
19	Organophosphorus insecticide interacts with the pheromone-binding proteins of Athetis lepigone: Implication for olfactory dysfunction. Journal of Hazardous Materials, 2020, 397, 122777.	12.4	30
20	Multi-Functional Desaturases in Two Spodoptera Moths with â^†11 and â^†12 Desaturation Activities. Journal of Chemical Ecology, 2019, 45, 378-387.	1.8	27
21	Identification and Expression Patterns of Anoplophora chinensis (Forster) Chemosensory Receptor Genes from the Antennal Transcriptome. Frontiers in Physiology, 2018, 9, 90.	2.8	25
22	Ligandâ€binding properties of odorantâ€binding protein 6 in <i>Athetis lepigone</i> to sex pheromones and maize volatiles. Pest Management Science, 2022, 78, 52-62.	3.4	25
23	The polysaccharide isolated from Pleurotus nebrodensis (PN-S) shows immune-stimulating activity in RAW264.7 macrophages. Chinese Journal of Natural Medicines, 2015, 13, 355-360.	1.3	24
24	Molecular identification of differential expression genes associated with sex pheromone biosynthesis in Spodoptera exigua. Molecular Genetics and Genomics, 2017, 292, 795-809.	2.1	21
25	Molecular Characterization and Differential Expression of an Olfactory Receptor Gene Family in the White-Backed Planthopper Sogatella furcifera Based on Transcriptome Analysis. PLoS ONE, 2015, 10, e0140605.	2.5	21
26	Characterization of candidate odorantâ€binding proteins and chemosensory proteins in the tea geometrid <i>Ectropis obliqua</i> Prout (Lepidoptera: Geometridae). Archives of Insect Biochemistry and Physiology, 2017, 94, e21383.	1.5	20
27	De novo assembly and characterization of antennal transcriptome reveal chemosensory system in Nysius ericae. Journal of Asia-Pacific Entomology, 2016, 19, 1077-1087.	0.9	19
28	Functional characterization of four sex pheromone receptors in the newly discovered maize pest Athetis lepigone. Journal of Insect Physiology, 2019, 113, 59-66.	2.0	19
29	Molecular identification and expression patterns of carboxylesterase genes based on transcriptome analysis of the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 2016, 19, 989-994.	0.9	18
30	Molecular identification and sex distribution of two chemosensory receptor families in Athetis lepigone by antennal transcriptome analysis. Journal of Asia-Pacific Entomology, 2016, 19, 571-580.	0.9	18
31	Identification and expression patterns of UDP-glycosyltransferase (UGT) genes from insect pest Athetis lepigone (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 2017, 20, 253-259.	0.9	18
32	Identification of Chemosensory Genes Based on the Transcriptomic Analysis of Six Different Chemosensory Organs in Spodoptera exigua. Frontiers in Physiology, 2018, 9, 432.	2.8	18
33	Computational and Experimental Approaches to Decipher the Binding Mechanism of General Odorant-Binding Protein 2 from <i>Athetis lepigone</i> to Chlorpyrifos and Phoxim. Journal of Agricultural and Food Chemistry, 2021, 69, 88-100.	5.2	18
34	Molecular and Functional Characterization of Three Odorant-Binding Protein from Periplaneta americana. PLoS ONE, 2017, 12, e0170072.	2.5	17
35	Key Amino Acid Residues Influencing Binding Affinities of Pheromone-Binding Protein from <i>Athetis lepigone</i> to Two Sex Pheromones. Journal of Agricultural and Food Chemistry, 2020, 68, 6092-6103.	5.2	17
36	Deep sequencing of antennal transcriptome from Callosobruchus chinensis to characterize odorant binding protein and chemosensory protein genes. Journal of Stored Products Research, 2017, 74, 13-21.	2.6	16

YA-NAN ZHANG

#	Article	IF	CITATIONS
37	Chemosensory Gene Families in the Oligophagous Pear Pest Cacopsylla chinensis (Hemiptera: Psyllidae). Insects, 2019, 10, 175.	2.2	16
38	Chemosensory genes in the head of <i>Spodoptera litura</i> larvae. Bulletin of Entomological Research, 2021, 111, 454-463.	1.0	16
39	CASTING: A Potent Supramolecular Strategy to Cytosolically Deliver STING Agonist for Cancer Immunotherapy and SARS-CoV-2 Vaccination. CCS Chemistry, 2023, 5, 885-901.	7.8	16
40	Functional Disparity of Three Pheromone-Binding Proteins to Different Sex Pheromone Components in <i>Hyphantria cunea</i> (Drury). Journal of Agricultural and Food Chemistry, 2021, 69, 55-66.	5.2	15
41	Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri. PLoS ONE, 2016, 11, e0155323.	2.5	14
42	Boric acid was orally toxic to different instars of Blattella germanica (L.) (Blattodea: Blattellidae) and caused dysbiosis of the, gut microbiota. Pesticide Biochemistry and Physiology, 2021, 172, 104756.	3.6	11
43	A Δ9 desaturase (SlitDes11) is associated with the biosynthesis of ester sex pheromone components in Spodoptera litura. Pesticide Biochemistry and Physiology, 2019, 156, 152-159.	3.6	10
44	Identification and tissue distribution of carboxylesterase (CXE) genes in Athetis lepigone (Lepidoptera:) Tj ETQqC	0.0 rgBT /	Oyerlock 10

45	Analysis of chemosensory genes in Semiothisa cinerearia reveals sex-specific contributions for type-ll sex pheromone chemosensation. Genomics, 2020, 112, 3846-3855.	2.9	6
46	AlepPBP2, but not AlepPBP3, may involve in the recognition of sex pheromones and maize volatiles in <i>Athetis lepigone</i> . Bulletin of Entomological Research, 2022, 112, 536-545.	1.0	4
47	Identification and dynamic expression profiling of circadian clock genes in <i>Spodoptera litura</i> provide new insights into the regulation of sex pheromone communication. Bulletin of Entomological Research, 2022, 112, 78-90.	1.0	3
48	Editorial: Insect Olfactory Proteins (From Gene Identification to Functional Characterization), Volume II. Frontiers in Physiology, 2022, 13, 858728.	2.8	3