List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/97498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward â€~seeing' critically: a Bayesian analysis of the impacts of a critical pedagogy. Advances in Health Sciences Education, 2022, 27, 323-354.	3.3	8
2	Applying activity theory to undergraduate medical curriculum reform: Lessons in contradictions from multiple stakeholders' perspectives. Medical Teacher, 2022, , 1-12.	1.8	2
3	Mastery versus invention learning: impacts on future learning of simulated procedural skills. Advances in Health Sciences Education, 2022, 27, 441-456.	3.3	5
4	Variable or Fixed? Exploring Entrustment Decision Making in Workplace- and Simulation-Based Assessments. Academic Medicine, 2022, 97, 1057-1064.	1.6	1
5	Evaluation of an advanced critical care echocardiography program: a mixed methods study. Canadian Journal of Anaesthesia, 2022, 69, 1260-1271.	1.6	0
6	Development of the Diabetic Wound Assessment Learning Tool (DiWALT) and validity evidence. Journal of Vascular Surgery, 2021, 73, 689-697.	1.1	0
7	Resident competencies before and after short intensive care unit rotations: a multicentre pilot observational study. Canadian Journal of Anaesthesia, 2021, 68, 235-244.	1.6	3
8	The myth of ivory tower versus practiceâ€oriented research: A systematic review of randomised studies in medical education. Medical Education, 2021, 55, 328-335.	2.1	7
9	Making Concepts Material. Simulation in Healthcare, 2021, 16, 392-400.	1.2	5
10	How supervision and educational supports impact medical students' preparation for future learning of endotracheal intubation skills: a non-inferiority experimental trial. BMC Medical Education, 2021, 21, 102.	2.4	9
11	"We can't just have a casual conversation― An institutional ethnography-informed study of work in labour and birth. Social Science and Medicine, 2021, 279, 113975.	3.8	7
12	Implicit and inferred: on the philosophical positions informing assessment science. Advances in Health Sciences Education, 2021, 26, 1597-1623.	3.3	6
13	Assumptions About Competency-Based Medical Education and the State of the Underlying Evidence: A Critical Narrative Review. Academic Medicine, 2021, 96, 296-306.	1.6	28
14	Getting everyone to the table: exploring everyday and everynight work to consider †latent social threats' through interprofessional tabletop simulation. Advances in Simulation, 2021, 6, 39.	2.3	2
15	Struggles with autonomy: Exploring the dual identities of surgeons and learners in the operating room. American Journal of Surgery, 2020, 219, 233-239.	1.8	10
16	The Benefits of Tying Yourself in Knots: Unraveling the Learning Mechanisms of Guided Discovery Learning in an Open Surgical Skills Course. Academic Medicine, 2020, 95, S37-S43.	1.6	4
17	Design Thinking–Informed Simulation. Simulation in Healthcare, 2020, 15, 205-213.	1.2	28
18	Lessons learned in preparing for and responding to the early stages of the COVID-19 pandemic: one simulation's program experience adapting to the new normal. Advances in Simulation, 2020, 5, 8.	2.3	35

#	Article	IF	CITATIONS
19	Resident learning trajectories in the workplace: A selfâ€regulated learning analysis. Medical Education, 2020, 54, 1120-1128.	2.1	17
20	Learning With Patients, Students, and Peers: Continuing Professional Development in the Solo Practitioner Workplace. Journal of Continuing Education in the Health Professions, 2020, 40, 283-288.	1.3	5
21	â€~There shouldn't be anything wrong with not knowing': epistemologies in simulation. Medical Education, 2019, 53, 1049-1059.	2.1	17
22	Why Content and Cognition Matter: Integrating Conceptual Knowledge to Support Simulation-Based Procedural Skills Transfer. Journal of General Internal Medicine, 2019, 34, 969-977.	2.6	18
23	Assigning Medical Students Learning Goals: Do They Do It, and What Happens When They Don't?. Teaching and Learning in Medicine, 2019, 31, 528-535.	2.1	5
24	Realizing One's Own Subjectivity. Academic Medicine, 2019, 94, 1970-1979.	1.6	11
25	Supporting self-regulation in simulation-based education: a randomized experiment of practice schedules and goals. Advances in Health Sciences Education, 2019, 24, 199-213.	3.3	11
26	A critical narrative review of transfer of basic science knowledge in health professions education. Medical Education, 2018, 52, 592-604.	2.1	46
27	Optimizing Residents' Performance of Lumbar Puncture: An RCT Comparing the Effect of Preparatory Interventions on Performance and Self-Confidence. Journal of General Internal Medicine, 2018, 33, 148-154.	2.6	3
28	Knowing How and Knowing Why: testing the effect of instruction designed for cognitive integration on procedural skills transfer. Advances in Health Sciences Education, 2018, 23, 61-74.	3.3	38
29	Applying Kane's validity framework to a simulation based assessment of clinical competence. Advances in Health Sciences Education, 2018, 23, 323-338.	3.3	29
30	Competency-based medical education: the discourse of infallibility. Medical Education, 2018, 52, 45-57.	2.1	60
31	How can systems engineering inform the methods of programme evaluation in health professions education?. Medical Education, 2018, 52, 364-375.	2.1	8
32	Do One Then See One: Sequencing Discovery Learning and Direct Instruction for Simulation-Based Technical Skills Training. Academic Medicine, 2018, 93, S37-S44.	1.6	14
33	Effectiveness of discovery learning using a mobile otoscopy simulator on knowledge acquisition and retention in medical students: a randomized controlled trial. Journal of Otolaryngology - Head and Neck Surgery, 2018, 47, 70.	1.9	12
34	Adapting form to function: can simulation serve our healthcare system and educational needs?. Advances in Simulation, 2018, 3, 8.	2.3	17
35	The impact of critical event checklists on medical management and teamwork during simulated crises in a surgical daycare facility. Anaesthesia, 2017, 72, 350-358.	3.8	25
36	Tying knots: an activity theory analysis of student learning goals in clinical education. Medical Education, 2017, 51, 687-698.	2.1	42

#	Article	IF	CITATIONS
37	Cues for self-regulation: it's difficult to make predictions, especially about the future. Medical Education, 2017, 51, 566-568.	2.1	3
38	Core Competencies or a Competent Core? A Scoping Review and Realist Synthesis of Invasive Bedside Procedural Skills Training in Internal Medicine. Academic Medicine, 2017, 92, 1632-1643.	1.6	29
39	ls there interâ€procedural transfer of skills in intraocular surgery? A randomized controlled trial. Acta Ophthalmologica, 2017, 95, 845-851.	1.1	30
40	Learning Through Experience: Influence of Formal and Informal Training on Medical Error Disclosure Skills in Residents. Journal of Graduate Medical Education, 2017, 9, 66-72.	1.3	11
41	Examining Residents' Strategic Mindfulness During Self-Regulated Learning of a Simulated Procedural Skill. Journal of Graduate Medical Education, 2016, 8, 364-371.	1.3	9
42	Difficulty with right–left discrimination: A clinical problem?. Cmaj, 2016, 188, 98-99.	2.0	3
43	The value proposition of simulation. Surgery, 2016, 160, 546-551.	1.9	14
44	Development and Assessment of a Distal Radial Fracture Model as a Clinical Teaching Tool. Journal of Bone and Joint Surgery - Series A, 2016, 98, 410-416.	3.0	32
45	Preparation for future learning: a missing competency in health professions education?. Medical Education, 2016, 50, 115-123.	2.1	100
46	Effects of a Longitudinal Interprofessional Educational Outreach Program on Collaboration. Journal of Continuing Education in the Health Professions, 2016, 36, 24-31.	1.3	12
47	The Launch of MedEngine: an Interactive E-Learning Platform Facilitating Learning, Communication and Collaboration in Medical Residency. Medical Science Educator, 2016, 26, 709-710.	1.5	Ο
48	From simulation research to education policy: how much evidence is enough?. Advances in Simulation, 2016, 1, 22.	2.3	3
49	Self-regulated learning in simulation-based training: a systematic review and meta-analysis. Medical Education, 2015, 49, 368-378.	2.1	104
50	An Equivalence Trial Comparing Instructor-Regulated With Directed Self-Regulated Mastery Learning of Advanced Cardiac Life Support Skills. Simulation in Healthcare, 2015, 10, 202-209.	1.2	19
51	Constructing a validity argument for the Objective Structured Assessment of Technical Skills (OSATS): a systematic review of validity evidence. Advances in Health Sciences Education, 2015, 20, 1149-1175.	3.3	104
52	Linking Simulation-Based Educational Assessments and Patient-Related Outcomes. Academic Medicine, 2015, 90, 246-256.	1.6	201
53	Using a situational awareness global assessment technique for interprofessional obstetrical team training with high fidelity simulation. Journal of Interprofessional Care, 2015, 29, 13-19.	1.7	27
54	The ABCs of DKA: Development and Validation of a Computer-Based Simulator and Scoring System. Journal of General Internal Medicine, 2015, 30, 1319-1332.	2.6	12

#	Article	IF	CITATIONS
55	A contemporary approach to validity arguments: a practical guide to Kane's framework. Medical Education, 2015, 49, 560-575.	2.1	371
56	Quality of randomised controlled trials in medical education reported between 2012 and 2013: a systematic review protocol. BMJ Open, 2014, 4, e005155-e005155.	1.9	6
57	Task- versus ego-oriented feedback delivered as numbers or comments during intubation training. Medical Education, 2014, 48, 430-440.	2.1	13
58	What's your best time? Chronometry in the learning of medical procedures. Medical Education, 2014, 48, 479-488.	2.1	17
59	In Reply to Rubio et al. Academic Medicine, 2014, 89, 1317.	1.6	0
60	Reconsidering Fidelity in Simulation-Based Training. Academic Medicine, 2014, 89, 387-392.	1.6	420
61	Comparing the cost-effectiveness of simulation modalities: a case study of peripheral intravenous catheterization training. Advances in Health Sciences Education, 2014, 19, 219-232.	3.3	58
62	Feedback for simulation-based procedural skills training: a meta-analysis and critical narrative synthesis. Advances in Health Sciences Education, 2014, 19, 251-272.	3.3	140
63	What counts as validity evidence? Examples and prevalence in a systematic review of simulation-based assessment. Advances in Health Sciences Education, 2014, 19, 233-250.	3.3	235
64	Simulation-based training in anaesthesiology: a systematic review and meta-analysis. British Journal of Anaesthesia, 2014, 112, 231-245.	3.4	188
65	Patient Outcomes in Simulation-Based Medical Education: A Systematic Review. Journal of General Internal Medicine, 2013, 28, 1078-1089.	2.6	268
66	Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. Medical Teacher, 2013, 35, e867-e898.	1.8	491
67	Cost: The missing outcome in simulation-based medical education research: A systematic review. Surgery, 2013, 153, 160-176.	1.9	295
68	Divergence in student and educator conceptual structures during auscultation training. Medical Education, 2013, 47, 198-209.	2.1	15
69	Technology-Enhanced Simulation to Assess Health Professionals. Academic Medicine, 2013, 88, 872-883.	1.6	215
70	Are two heads better than one? Comparing dyad and self-regulated learning in simulation training. Medical Education, 2013, 47, 1215-1222.	2.1	39
71	Learning in the health professions: what does self-regulation have to do with it?. Medical Education, 2013, 47, 1057-1059.	2.1	16
72	State of the Evidence on Simulation-Based Training for Laparoscopic Surgery. Annals of Surgery, 2013, 257, 586-593.	4.2	269

#	Article	IF	CITATIONS
73	Mastery Learning for Health Professionals Using Technology-Enhanced Simulation. Academic Medicine, 2013, 88, 1178-1186.	1.6	267
74	Comparative Effectiveness of Technology-Enhanced Simulation Versus Other Instructional Methods. Simulation in Healthcare, 2012, 7, 308-320.	1.2	258
75	Evaluating the Influence of Goal Setting on Intravenous Catheterization Skill Acquisition and Transfer in a Hybrid Simulation Training Context. Simulation in Healthcare, 2012, 7, 236-242.	1.2	8
76	Do not teach me while I am working!. American Journal of Surgery, 2012, 203, 253-257.	1.8	23
77	A reflective analysis of medical education research on selfâ€regulation in learning and practice. Medical Education, 2012, 46, 71-79.	2.1	172
78	Directed selfâ€regulated learning versus instructorâ€regulated learning in simulation training. Medical Education, 2012, 46, 648-656.	2.1	110
79	Informal self-regulated learning on a surgical rotation: uncovering student experiences in context. Advances in Health Sciences Education, 2011, 16, 643-653.	3.3	49
80	Technology-Enhanced Simulation for Health Professions Education. JAMA - Journal of the American Medical Association, 2011, 306, 978-88.	7.4	1,379
81	A New Concept of Unsupervised Learning: Directed Self-Guided Learning in the Health Professions. Academic Medicine, 2010, 85, S49-S55.	1.6	112
82	Coordinating Progressive Levels of Simulation Fidelity to Maximize Educational Benefit. Academic Medicine, 2010, 85, 806-812.	1.6	148
83	What are we missing? On our problems of definition in health professions education. Medical Education, 2010, 44, 1052-1053.	2.1	1
84	Comparing selfâ€guided learning and educatorâ€guided learning formats for simulationâ€based clinical training. Journal of Advanced Nursing, 2010, 66, 1832-1844.	3.3	59
85	Pediatric Urology Training: Performance-Based Assessment Using the Fundamentals of Laparoscopic Surgery. Journal of Surgical Research, 2010, 161, 240-245.	1.6	13
86	Assessing suturing skills in a self-guided learning setting: absolute symmetry error. Advances in Health Sciences Education, 2009, 14, 685-695.	3.3	10
87	Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control. Experimental Brain Research, 2009, 198, 445-453.	1.5	1
88	How effective is self-guided learning of clinical technical skills? It's all about process. Medical Education, 2009, 43, 507-515.	2.1	103
89	Developing Criteria for Proficiency-Based Training of Surgical Technical Skills Using Simulation: Changes in Performances as a Function of Training Year. Journal of the American College of Surgeons, 2008, 206, 205-211.	0.5	40
90	Comparison of expert instruction and computer-based video training in teaching fundamental surgical skills to medical students. Surgery, 2008, 143, 539-544.	1.9	104

#	Article	IF	CITATIONS
91	Application of Motor Learning Principles to Complex Surgical Tasks: Searching for the Optimal Practice Schedule. Journal of Motor Behavior, 2007, 39, 40-48.	0.9	65
92	Drilling Simulated Temporal Bones with Left-Handed Tools: A Left-Hander's Right?. Annals of Otology, Rhinology and Laryngology, 2007, 116, 819-826.	1.1	11
93	Construct validity of computer-assisted assessment: quantification of movement processes during a vascular anastomosis on a live porcine model. American Journal of Surgery, 2007, 193, 523-529.	1.8	24
94	Laboratory-based vascular anastomosis training: A randomized controlled trial evaluating the effects of bench model fidelity and level of training on skill acquisition. Journal of Vascular Surgery, 2007, 45, 343-349.	1.1	161
95	Tensiometry as a Measure of Improvement in Knot Quality in Undergraduate Medical Students. Advances in Health Sciences Education, 2007, 12, 331-344.	3.3	10
96	Computer-assisted assessment of one-handed knot tying skills performed within various contexts: a construct validity study. American Journal of Surgery, 2006, 192, 109-113.	1.8	38
97	Quantification of process measures in laparoscopic suturing. Surgical Endoscopy and Other Interventional Techniques, 2006, 20, 1862-1866.	2.4	8
98	Surface exploration using laparoscopic surgical instruments: The perception of surface roughness. Ergonomics, 2005, 48, 874-894.	2.1	19