
## Ovanes G Mekenyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9748848/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Estimating the reliability of simulated metabolism using documented data and theoretical knowledge.<br>QSAR application. Computational Toxicology, 2022, , 100218.                                                      | 3.3 | 0         |
| 2  | Assessment of uncertainty and credibility of predictions by the OECD QSAR Toolbox automated read-across workflow for predicting acute oral toxicity. Computational Toxicology, 2022, 22, 100219.                        | 3.3 | 2         |
| 3  | Assessing metabolic similarity for read-across predictions. Computational Toxicology, 2021, 18, 100160.                                                                                                                 | 3.3 | 6         |
| 4  | Criteria for quantitative assessment of metabolic similarity between chemicals. II. Application to human health endpoints. Computational Toxicology, 2021, 19, 100173.                                                  | 3.3 | 6         |
| 5  | Selection of Representative Constituents for Unknown, Variable, Complex, or Biological Origin<br>Substance Assessment Based on Hierarchical Clustering. Environmental Toxicology and Chemistry,<br>2021, 40, 3205-3218. | 4.3 | 3         |
| 6  | Automated read-across workflow for predicting acute oral toxicity: I. The decision scheme in the QSAR toolbox. Regulatory Toxicology and Pharmacology, 2021, 125, 105015.                                               | 2.7 | 14        |
| 7  | The QSAR Toolbox automated read-across workflow for predicting acute oral toxicity: II. Verification and validation. Computational Toxicology, 2021, 20, 100194.                                                        | 3.3 | 11        |
| 8  | Modeling hazard assessment of chemicals based on adducts formation. I. A basis for inclusion of kinetic factors in simulating skin sensitization. Computational Toxicology, 2020, 15, 100130.                           | 3.3 | 3         |
| 9  | Using metabolic information for categorization and read-across in the OECD QSAR Toolbox.<br>Computational Toxicology, 2019, 12, 100102.                                                                                 | 3.3 | 11        |
| 10 | Automated and standardized workflows in the OECD QSAR Toolbox. Computational Toxicology, 2019, 10, 89-104.                                                                                                              | 3.3 | 25        |
| 11 | UVCB substances II: Development of an endpointâ€nonspecific procedure for selection of computationally generated representative constituents. Environmental Toxicology and Chemistry, 2019, 38, 682-694.                | 4.3 | 9         |
| 12 | Mechanistic relationship between biodegradation and bioaccumulation. Practical outcomes.<br>Regulatory Toxicology and Pharmacology, 2019, 107, 104411.                                                                  | 2.7 | 4         |
| 13 | Sabcho Dimitrov (1952–2018) – A dedication. Computational Toxicology, 2019, 11, 90.                                                                                                                                     | 3.3 | 0         |
| 14 | Category consistency in the OECD QSAR Toolbox: Assessment and reporting tool to justify read-across. Computational Toxicology, 2019, 11, 65-71.                                                                         | 3.3 | 9         |
| 15 | The implementation of RAAF in the OECD QSAR Toolbox. Regulatory Toxicology and Pharmacology, 2019, 105, 51-61.                                                                                                          | 2.7 | 22        |
| 16 | Validation of the performance of TIMES genotoxicity models with EFSA pesticide data. Mutagenesis, 2019, 34, 83-90.                                                                                                      | 2.6 | 0         |
| 17 | Alert performance: A new functionality in the OECD QSAR Toolbox. Computational Toxicology, 2019, 10, 26-37.                                                                                                             | 3.3 | 10        |
| 18 | Procedure for toxicological predictions based on mechanistic weight of evidences: Application to<br>Ames mutagenicity. Computational Toxicology, 2019, 12, 100009.                                                      | 3.3 | 2         |

OVANES G MEKENYAN

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The OECD QSAR Toolbox Starts Its Second Decade. Methods in Molecular Biology, 2018, 1800, 55-77.                                                                                                                                                                                | 0.9 | 69        |
| 20 | The Adverse Outcome Pathway for Skin Sensitisation: Moving Closer to Replacing Animal Testing. ATLA<br>Alternatives To Laboratory Animals, 2016, 44, 453-460.                                                                                                                   | 1.0 | 16        |
| 21 | Integrated approach to testing and assessment for predicting rodent genotoxic carcinogenicity.<br>Journal of Applied Toxicology, 2016, 36, 1536-1550.                                                                                                                           | 2.8 | 13        |
| 22 | UVCB substances: Methodology for structural description and application to fate and hazard assessment. Environmental Toxicology and Chemistry, 2015, 34, 2450-2462.                                                                                                             | 4.3 | 20        |
| 23 | A feasibility study: Can information collected to classify for mutagenicity be informative in predicting carcinogenicity?. Regulatory Toxicology and Pharmacology, 2015, 72, 17-25.                                                                                             | 2.7 | 18        |
| 24 | Towards AOP application – Implementation of an integrated approach to testing and assessment (IATA)<br>into a pipeline tool for skin sensitization. Regulatory Toxicology and Pharmacology, 2014, 69, 529-545.                                                                  | 2.7 | 89        |
| 25 | A Mechanistic Approach to Modeling Respiratory Sensitization. Chemical Research in Toxicology, 2014, 27, 219-239.                                                                                                                                                               | 3.3 | 33        |
| 26 | Accessing and Using Chemical Databases. Methods in Molecular Biology, 2013, 930, 29-52.                                                                                                                                                                                         | 0.9 | 0         |
| 27 | Investigating the Relationship between in Vitro–in Vivo Genotoxicity: Derivation of Mechanistic QSAR<br>Models for in Vivo Liver Genotoxicity and in Vivo Bone Marrow Micronucleus Formation Which<br>Encompass Metabolism. Chemical Research in Toxicology, 2012, 25, 277-296. | 3.3 | 23        |
| 28 | MetaPath: An electronic knowledge base for collating, exchanging and analyzing case studies of xenobiotic metabolism. Regulatory Toxicology and Pharmacology, 2012, 63, 84-96.                                                                                                  | 2.7 | 25        |
| 29 | Use of Genotoxicity Information in the Development of Integrated Testing Strategies (ITS) for Skin<br>Sensitization. Chemical Research in Toxicology, 2010, 23, 1519-1540.                                                                                                      | 3.3 | 22        |
| 30 | Conformational Coverage by a Genetic Algorithm:  Saturation of Conformational Space. Journal of<br>Chemical Information and Modeling, 2007, 47, 851-863.                                                                                                                        | 5.4 | 26        |
| 31 | Identifying the Structural Requirements for Chromosomal Aberration by Incorporating Molecular<br>Flexibility and Metabolic Activation of Chemicals. Chemical Research in Toxicology, 2007, 20, 1927-1941.                                                                       | 3.3 | 31        |
| 32 | Representation of Chemical Information in OASIS Centralized 3D Database for Existing Chemicals.<br>Journal of Chemical Information and Modeling, 2006, 46, 2537-2551.                                                                                                           | 5.4 | 15        |
| 33 | A Stepwise Approach for Defining the Applicability Domain of SAR and QSAR Models. Journal of<br>Chemical Information and Modeling, 2005, 45, 839-849.                                                                                                                           | 5.4 | 243       |
| 34 | Skin Sensitization: Modeling Based on Skin Metabolism Simulation and Formation of Protein<br>Conjugates. International Journal of Toxicology, 2005, 24, 189-204.                                                                                                                | 1.2 | 79        |
| 35 | 2D-3D Migration of Large Chemical Inventories with Conformational Multiplication. Application of the Genetic Algorithm. Journal of Chemical Information and Modeling, 2005, 45, 283-292.                                                                                        | 5.4 | 20        |
| 36 | A Systematic Approach to Simulating Metabolism in Computational Toxicology. I. The TIMES Heuristic<br>Modelling Framework. Current Pharmaceutical Design, 2004, 10, 1273-1293.                                                                                                  | 1.9 | 109       |

Ovanes G Mekenyan

| #  | Article                                                                                                                                                                                                                                   | IF       | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 37 | COREPA-M: A Multi-Dimensional Formulation of COREPA. QSAR and Combinatorial Science, 2004, 23, 5-18.                                                                                                                                      | 1.4      | 24        |
| 38 | Identification of the Structural Requirements for Mutagenicity by Incorporating Molecular Flexibility<br>and Metabolic Activation of Chemicals I:Â TA100 Model. Chemical Research in Toxicology, 2004, 17,<br>753-766.                    | 3.3      | 52        |
| 39 | Rule interpreter: a chemical language for structure-based screening. Computational and Theoretical Chemistry, 2003, 622, 53-62.                                                                                                           | 1.5      | 7         |
| 40 | Dynamic 3D QSAR techniques: applications in toxicology. Computational and Theoretical Chemistry, 2003, 622, 147-165.                                                                                                                      | 1.5      | 29        |
| 41 | Dynamic QSAR Techniques: Applications in Drug Design and Toxicology. Current Pharmaceutical Design, 2002, 8, 1605-1621.                                                                                                                   | 1.9      | 22        |
| 42 | ESTROGENICITY OF ALKYLPHENOLIC COMPOUNDS: A 3-D STRUCTURE–ACTIVITY EVALUATION OF GENE ACTIVATION. Environmental Toxicology and Chemistry, 2000, 19, 1727.                                                                                 | 4.3      | 23        |
| 43 | New developments in a hazard identification algorithm for hormone receptor ligands. QSAR and<br>Combinatorial Science, 1999, 18, 139-153.                                                                                                 | 1.2      | 40        |
| 44 | Conformational Coverage by a Genetic Algorithm. Journal of Chemical Information and Computer Sciences, 1999, 39, 997-1016.                                                                                                                | 2.8      | 35        |
| 45 | The role of ligand flexibility in predicting biological activity: Structure–activity relationships for<br>aryl hydrocarbon, estrogen, and androgen receptor binding affinity. Environmental Toxicology and<br>Chemistry, 1998, 17, 15-25. | 4.3      | 27        |
| 46 | A Kinetic Analysis of the Conformational Flexibility of Steroid Hormones. QSAR and Combinatorial Science, 1998, 17, 437-449.                                                                                                              | 1.2      | 5         |
| 47 | A Kinetic Analysis of the Conformational Flexibility of Steroid Hormones. QSAR and Combinatorial Science, 1998, 17, 437-449.                                                                                                              | 1.2      | 18        |
| 48 | THE ROLE OF LIGAND FLEXIBILITY IN PREDICTING BIOLOGICAL ACTIVITY: STRUCTURE–ACTIVITY RELATIONSHIPS<br>FOR ARYL HYDROCARBON, ESTROGEN, AND ANDROGEN RECEPTOR BINDING AFFINITY. Environmental<br>Toxicology and Chemistry, 1998, 17, 15.    | S<br>4.3 | 14        |
| 49 | A Computationally-Based Hazard Identification Algorithm That Incorporates Ligand Flexibility. 1.<br>Identification of Potential Androgen Receptor Ligands. Environmental Science & Technology, 1997,<br>31, 3702-3711.                    | 10.0     | 67        |
| 50 | â€~Dynamic' QSAR For Semicarbazide-induced Mortality in Frog Embryos. , 1996, 16, 355-363.                                                                                                                                                |          | 22        |
| 51 | Quantum-chemical Descriptors for Estimating the Acute Toxicity of Electrophiles to the Fathed<br>minnow (Pimephales promelas): An Analysis Based on Molecular Mechanisms. QSAR and Combinatorial<br>Science, 1996, 15, 302-310.           | 1.2      | 77        |
| 52 | Quantum-chemical Descriptors for Estimating the Acute Toxicity of Substituted Benzenes to the Guppy<br>(Poecilia reticulata) and Fathead Minnow (Pimephales promelas). QSAR and Combinatorial Science,<br>1996, 15, 311-320.              | 1.2      | 52        |
| 53 | QSAR Evaluation of .alphaTerthienyl Phototoxicity. Environmental Science & Technology, 1995, 29, 1267-1272.                                                                                                                               | 10.0     | 33        |
| 54 | A new development of the oasis computer system for modeling molecular properties. Computers & Chemistry, 1994, 18, 173-187.                                                                                                               | 1.2      | 48        |

| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A QSAR Approach for Estimating the Aquatic Toxicity of Soft Electrophiles [QSAR for Soft<br>Electrophiles]. QSAR and Combinatorial Science, 1993, 12, 349-356. | 1.2 | 90        |
| 56 | The microcomputer OASIS system for predicting the biological activity of chemical compounds.<br>Computers & Chemistry, 1990, 14, 193-200.                      | 1.2 | 49        |