List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9747930/publications.pdf Version: 2024-02-01

KATDIN LAMSZUS

#	Article	IF	CITATIONS
1	MPAPASS software enables stitched multiplex, multidimensional EV repertoire analysis and a standard framework for reporting bead-based assays. Cell Reports Methods, 2022, 2, 100136.	2.9	8
2	Diagnostic potential of extracellular vesicles in meningioma patients. Neuro-Oncology, 2022, 24, 2078-2090.	1.2	6
3	TBIO-07. Pediatric tumor classification through genome-wide methylation profiling of extracellular vesicle DNA. Neuro-Oncology, 2022, 24, i184-i184.	1.2	0
4	Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma. Cancer Cell, 2022, 40, 639-655.e13.	16.8	166
5	Circulating cell-free DNA and its clinical utility in cancer. Laboratoriums Medizin, 2022, 46, 265-272.	0.6	2
6	The genetic landscape of choroid plexus tumors in children and adults. Neuro-Oncology, 2021, 23, 650-660.	1.2	26
7	Intrathecal and systemic alterations of L-arginine metabolism in patients after intracerebral hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 0271678X2098321.	4.3	7
8	Cannabidiol converts NF-κB into a tumor suppressor in glioblastoma with defined antioxidative properties. Neuro-Oncology, 2021, 23, 1898-1910.	1.2	24
9	CD74 and CD44 Expression on CTCs in Cancer Patients with Brain Metastasis. International Journal of Molecular Sciences, 2021, 22, 6993.	4.1	26
10	Genome-wide methylation profiling of glioblastoma cell-derived extracellular vesicle DNA allows tumor classification. Neuro-Oncology, 2021, 23, 1087-1099.	1.2	59
11	Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated. Journal of Clinical Oncology, 2021, 39, 3839-3852.	1.6	93
12	IMMU-17. SYSTEMIC IMMUNOSUPPRESSION OF CD4+ T HELPER CELLS IN GLIOMA. Neuro-Oncology, 2021, 23, vi95-vi95.	1.2	0
13	BIOM-19. DECIPHERING THE METHYLATION SIGNATURE OF CIRCULATING EXTRACELLULAR VESICLE DNA FOR CNS TUMOR CLASSIFICATION. Neuro-Oncology, 2021, 23, vi14-vi14.	1.2	0
14	PATH-34. MOLECULAR AND CLINICAL HETEROGENEITY WITHIN SPINAL EPENDYMOMAS. Neuro-Oncology, 2021, 23, vi122-vi122.	1.2	0
15	BIOM-39. METHYLATION AND MUTATION PROFILES IN MENINGIOMA CELL-DERIVED EXTRACELLULAR VESICLE DNA REFLECT EPIGENETIC AND GENOMIC ALTERATIONS IN ORIGINAL TUMORS. Neuro-Oncology, 2021, 23, vi19-vi19.	1.2	0
16	PATH-39. INTEGRATED MOLECULAR-MORPHOLOGICAL MENINGIOMA CLASSIFICATION: A MULTICENTER RETROSPECTIVE ANALYSIS, RETRO- AND PROSPECTIVELY VALIDATED. Neuro-Oncology, 2021, 23, vi123-vi124.	1.2	0
17	Mass Spectrometric Lipid Profiles of Picosecond Infrared Laserâ€Generated Tissue Aerosols Discriminate Different Brain Tissues. Lasers in Surgery and Medicine, 2020, 52, 228-234.	2.1	5
18	Immune Characterization in Aneurysmal Subarachnoid Hemorrhage Reveals Distinct Monocytic Activation and Chemokine Patterns. Translational Stroke Research, 2020, 11, 1348-1361.	4.2	32

#	Article	IF	CITATIONS
19	Discovery of Targetable Genetic Alterations in NSCLC Patients with Different Metastatic Patterns Using a MassARRAY-Based Circulating Tumor DNA Assay. Cells, 2020, 9, 2337.	4.1	13
20	FASN Is a Biomarker Enriched in Malignant Glioma-Derived Extracellular Vesicles. International Journal of Molecular Sciences, 2020, 21, 1931.	4.1	20
21	Genome-wide DNA methylation profiles distinguish silent from non-silent ACTH adenomas. Acta Neuropathologica, 2020, 140, 95-97.	7.7	7
22	Molecular profiling of an osseous metastasis in glioblastoma during checkpoint inhibition: potential mechanisms of immune escape. Acta Neuropathologica Communications, 2020, 8, 28.	5.2	24
23	CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas. Acta Neuropathologica, 2020, 140, 409-413.	7.7	116
24	ALCAM contributes to brain metastasis formation in non-small-cell lung cancer through interaction with the vascular endothelium. Neuro-Oncology, 2020, 22, 955-966.	1.2	36
25	Local Intracerebral Immunomodulation Using Interleukin-Expressing Mesenchymal Stem Cells in Glioblastoma. Clinical Cancer Research, 2020, 26, 2626-2639.	7.0	31
26	Immunologic Profiling of Mutational and Transcriptional Subgroups in Pediatric and Adult High-Grade Gliomas. Cancer Immunology Research, 2019, 7, 1401-1411.	3.4	35
27	Highlights of the inaugural ten – the launch of Neuro-Oncology Advances. Neuro-Oncology Advances, 2019, 1, vdz016.	0.7	0
28	Clonality of circulating tumor cells in breast cancer brain metastasis patients. Breast Cancer Research, 2019, 21, 101.	5.0	54
29	Cytotoxic T Cells and their Activation Status are Independent Prognostic Markers in Meningiomas. Clinical Cancer Research, 2019, 25, 5260-5270.	7.0	23
30	Evolutionary Trajectories of IDHWT Glioblastomas Reveal a Common Path of Early Tumorigenesis Instigated Years ahead of Initial Diagnosis. Cancer Cell, 2019, 35, 692-704.e12.	16.8	172
31	Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. Journal of Extracellular Vesicles, 2019, 8, 1588555.	12.2	86
32	CSIG-09. PROTEOMIC ANALYSIS OF MENINGIOMA CELL-DERIVED EXTRACELLULAR VESICLES: FIRST OF A KIND. Neuro-Oncology, 2019, 21, vi45-vi46.	1.2	0
33	CSIG-11. CENTRAL NERVOUS SYSTEM TUMOR PATIENTS HAVE ELEVATED LEVELS OF CIRCULATING EXTRACELLULAR VESICLES. Neuro-Oncology, 2019, 21, vi46-vi46.	1.2	0
34	RARE-26. WHOLE GENOME SEQUENCING OF AN OSSEOUS METASTASIS DURING CHECKPOINT-CONTROLLED INTRACRANIAL GLIOBLASTOMA REVEALS NEW INSIGHTS INTO POTENTIAL MECHANISMS OF IMMUNE ESCAPE. Neuro-Oncology, 2019, 21, vi227-vi227.	1.2	0
35	PATH-53. IMMUNOLOGICAL PROFILING OF MUTATIONAL AND TRANSCRIPTIONAL SUBGROUPS IN PEDIATRIC AND ADULT HIGH-GRADE GLIOMAS. Neuro-Oncology, 2019, 21, vi155-vi155.	1.2	0
36	IMMU-40. CANCER IMMUNOEDITING SHAPES THE IMMUNE ESCAPE SIGNATURE AND CLONAL ARCHITECTURE IN GLIOMAS. Neuro-Oncology, 2019, 21, vi127-vi127.	1.2	0

#	Article	IF	CITATIONS
37	GENE-22. GENOME-WIDE METHYLATION PROFILING OF GLIOBLASTOMA EXTRACELLULAR VESICLE DNA ALLOWS TUMOR CLASSIFICATION. Neuro-Oncology, 2019, 21, vi102-vi102.	1.2	Ο
38	Preclinical analysis of human mesenchymal stem cells: tumor tropism and therapeutic efficiency of local HSV-TK suicide gene therapy in glioblastoma. Oncotarget, 2019, 10, 6049-6061.	1.8	28
39	Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Science Advances, 2018, 4, eaar2766.	10.3	416
40	Immunophenotyping of Newly Diagnosed and Recurrent Glioblastoma Defines Distinct Immune Exhaustion Profiles in Peripheral and Tumor-infiltrating Lymphocytes. Clinical Cancer Research, 2018, 24, 4187-4200.	7.0	114
41	CBMT-12. FATTY ACID SYNTHASE POSITIVE EVs AS NOVEL BIOMARKERS IN BRAIN CANCER Neuro-Oncology, 2018, 20, vi34-vi35.	1.2	0
42	IMMU-55. IMMUNOMODULATORY IL-7 AND IL-12-EXPRESSING MSCs INDUCE LONG-TERM SURVIVAL AND IMMUNITY IN SYNGENEIC INTRACEREBRAL GLIOBLASTOMA MODELS. Neuro-Oncology, 2018, 20, vi133-vi134.	1.2	0
43	Chordoid meningiomas can be sub-stratified into prognostically distinct DNA methylation classes and are enriched for heterozygous deletions of chromosomal arm 2p. Acta Neuropathologica, 2018, 136, 975-978.	7.7	11
44	The secreted glycolytic enzyme GPI/AMF stimulates glioblastoma cell migration and invasion in an autocrine fashion but can have anti-proliferative effects. Neuro-Oncology, 2018, 20, 1594-1605.	1.2	21
45	Optical Barcoding for Single-Clone Tracking to Study Tumor Heterogeneity. Molecular Therapy, 2017, 25, 621-633.	8.2	32
46	DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncology, The, 2017, 18, 682-694.	10.7	586
47	PTEN mediates the cross talk between breast and glial cells in brain metastases leading to rapid disease progression. Oncotarget, 2017, 8, 6155-6168.	1.8	35
48	Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation. Neuro-Oncology, 2016, 18, 1219-1229.	1.2	114
49	Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 203-210.	3.8	28
50	TERT Promoter Mutations and Risk of Recurrence in Meningioma. Journal of the National Cancer Institute, 2016, 108, djv377.	6.3	283
51	Transcriptomic analysis of aggressive meningiomas identifies PTTG1 and LEPR as prognostic biomarkers independent of WHO grade. Oncotarget, 2016, 7, 14551-14568.	1.8	36
52	METB-06THE GLYCOLYSIS ENZYME GLUCOSE 6-PHOSPHATE ISOMERASE (GPI) STIMULATES GLIOBLASTOMA CELL MOTILITY IN AN AUTOCRINE FASHION. Neuro-Oncology, 2015, 17, v136.2-v136.	1.2	0
53	Printed peptide arrays identify prognostic TNC serumantibodies in glioblastoma patients. Oncotarget, 2015, 6, 13579-13590.	1.8	21
54	<i>EGFR</i> Amplification and Glioblastoma Stem-Like Cells. Stem Cells International, 2015, 2015, 1-11.	2.5	30

#	Article	IF	CITATIONS
55	METB-05GLYCOLYSIS AND THE PENTOSE PHOSPHATE PATHWAY ARE DIFFERENTIALLY ASSOCIATED WITH THE DICHOTOMOUS REGULATION OF GLIOBLASTOMA CELL MIGRATION VERSUS PROLIFERATION. Neuro-Oncology, 2015, 17, v136.1-v136.	1.2	1
56	Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms. Neuro-Oncology, 2015, 17, 1076-1085.	1.2	27
57	"GO OR GROW" - LINKS BETWEEN CELLULAR FUNCTION, GLUCOSE METABOLISM AND GLIOMA MICROENVIRONMENT. Neuro-Oncology, 2014, 16, iii6-iii6.	1.2	1
58	Hematogenous dissemination of glioblastoma multiforme. Science Translational Medicine, 2014, 6, 247ra101.	12.4	264
59	High-Frequency Stimulation of the Subthalamic Nucleus Counteracts Cortical Expression of Major Histocompatibility Complex Genes in a Rat Model of Parkinson's Disease. PLoS ONE, 2014, 9, e91663.	2.5	7
60	Glioma stem cells as a target for treatment. Targeted Oncology, 2010, 5, 211-215.	3.6	18
61	Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Research, 2009, 1268, 24-37.	2.2	75