Fan Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9745409/publications.pdf Version: 2024-02-01

FAN FANC

#	Article	IF	CITATIONS
1	Insight of SrCl2 as an Appropriate Flux Medium in Synthesizing Al-Doped SrTiO3 Photocatalyst for Overall Water Splitting. Catalysis Letters, 2023, 153, 1083-1088.	2.6	5
2	Gel-assisted synthesis of CIZS for visible-light photocatalytic reduction reaction. Chemical Engineering Journal, 2022, 429, 132364.	12.7	14
3	Insight into the regulation between crystallinity and oxygen vacancies of BiVO ₄ affecting the photocatalytic oxygen evolution activity. Catalysis Science and Technology, 2022, 12, 4040-4049.	4.1	5
4	Synergistic surface oxygen defect and bulk Ti3+ defect engineering on SrTiO3 for enhancing photocatalytic overall water splitting. Journal of Colloid and Interface Science, 2022, 626, 662-673.	9.4	23
5	Understanding targeted modulation mechanism in SrTiO3 using K+ for solar water splitting. Applied Catalysis B: Environmental, 2022, 316, 121613.	20.2	18
6	Potassium promoted macro-mesoporous Co3O4-La0.88Sr0.12CoO3â~'Î^ nanotubes with large surface area: A high-performance catalyst for soot removal. Journal of Colloid and Interface Science, 2021, 582, 569-580.	9.4	15
7	Surface acid etching for efficient anchoring of potassium on 3DOM La0.8Sr0.2MnO3 catalyst: An integration strategy for boosting soot and NOx simultaneous elimination. Journal of Hazardous Materials, 2021, 409, 124916.	12.4	23
8	La,Al-Codoped SrTiO ₃ as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering. ACS Catalysis, 2021, 11, 11429-11439.	11.2	83
9	The effect of Fe(<scp>iii</scp>) ions on oxygen-vacancy-rich BiVO ₄ on the photocatalytic oxygen evolution reaction. Catalysis Science and Technology, 2021, 11, 7598-7607.	4.1	7
10	Transition metal oxides (TMOs) supported on ordered mesoporous Ce0.1Mn0.90δas high-efficient catalysts for toluene combustion. Materials Letters, 2020, 263, 127230.	2.6	3
11	Surface engineering on porous perovskite-type La0.6Sr0.4CoO3-δ nanotubes for an enhanced performance in diesel soot elimination. Journal of Hazardous Materials, 2020, 399, 123014.	12.4	37
12	MnO _x dispersed on attapulgite derived Al-SBA-15: a promising catalyst for volatile organic compound combustion. RSC Advances, 2020, 10, 2472-2482.	3.6	5
13	Construction of a hollow structure in La0.9K0.1CoO3â^´Î´ nanofibers via grain size control by Sr substitution with an enhanced catalytic performance for soot removal. Catalysis Science and Technology, 2019, 9, 4938-4951.	4.1	13
14	Promoting Diesel Soot Combustion Efficiency over Hierarchical Brushlike α-MnO ₂ and Co ₃ O ₄ Nanoarrays by Improving Reaction Sites. Industrial & Engineering Chemistry Research, 2019, 58, 13935-13949.	3.7	25
15	Construction of substrate-dependent 3D structured MnO2 catalysts for diesel soot elimination. Applied Surface Science, 2019, 484, 197-208.	6.1	18
16	In situ exsolution of Co/CoOx core-shell nanoparticles on double perovskite porous nanotubular webs: A synergistically active catalyst for soot efficient oxidation. Chemical Engineering Journal, 2019, 372, 752-764.	12.7	53
17	Self-templating construction of mesopores on three-dimensionally ordered macroporous La _{0.5} Sr _{0.5} MnO ₃ perovskite with enhanced performance for soot combustion. Catalysis Science and Technology, 2019, 9, 1835-1846.	4.1	26
18	Effect of calcination temperature on structural properties and catalytic soot combustion activity of MnOx/wire-mesh monoliths. Applied Surface Science, 2019, 467-468, 1088-1103.	6.1	32

Fan Fang

#	Article	IF	CITATIONS
19	Interphase strengthening birnessite MnO2 coating on three-dimensional Ni foam for soot removal. Applied Catalysis A: General, 2018, 568, 157-167.	4.3	22
20	Facile synthesis of three-dimensional ordered macroporous Sr _{1â^'x} K _x TiO ₃ perovskites with enhanced catalytic activity for soot combustion. Catalysis Science and Technology, 2018, 8, 5462-5472.	4.1	30
21	Fabrication of perovskite-type macro/mesoporous La1-xKxFeO3-Î′ nanotubes as an efficient catalyst for soot combustion. Applied Catalysis B: Environmental, 2018, 236, 184-194.	20.2	123
22	Constructing a three-dimensionally ordered macroporous LaCrO _δ composite oxide via cerium substitution for enhanced soot abatement. Catalysis Science and Technology, 2017, 7, 2204-2212.	4.1	22
23	K–Mn supported on three-dimensionally ordered macroporous La 0.8 Ce 0.2 FeO 3 catalysts for the catalytic combustion of soot. Applied Surface Science, 2017, 399, 114-122.	6.1	64