Sultan Butun Sengel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/974413/publications.pdf

Version: 2024-02-01

32 papers

1,015 citations 19 h-index 29 g-index

32 all docs 32 docs citations

times ranked

32

1331 citing authors

#	Article	IF	Citations
1	Boric acid versus boron trioxide as catalysts for green energy source H2 production from sodium borohydride methanolysis. MANAS: Journal of Engineering, 2021, 9, 142-152.	0.8	5
2	Tunable Friction Through Stimuli Responsive Hybrid Carbon Microspheres. Langmuir, 2019, 35, 15849-15854.	3 . 5	8
3	Synthesis and characterization of poly(Nâ€(2â€mercaptoethyl) acrylamide) microgel for biomedical applications. Polymers for Advanced Technologies, 2019, 30, 2109-2121.	3.2	8
4	Highly regenerable ionic liquid microgels as inherently metalâ€free green catalyst for H ₂ generation. Polymers for Advanced Technologies, 2018, 29, 1426-1434.	3.2	13
5	Responsive biopolymer-based microgels/nanogels for drug delivery applications. , 2018, , 453-500.		26
6	Halloysite-carboxymethyl cellulose cryogel composite from natural sources. Applied Clay Science, 2017, 140, 66-74.	5. 2	23
7	Removal of arsenate and dichromate ions from different aqueous media by amine based p(TAEA-co-GDE) microgels. Journal of Environmental Management, 2017, 197, 631-641.	7.8	16
8	Poly((Thiazol-2-yl) acrylamide), p(ATA) microgel: Synthesis, characterization and versatile applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 272-278.	4.7	4
9	Environmentally benign halloysite clay nanotubes as alternative catalyst to metal nanoparticles in H 2 production from methanolysis of sodium borohydride. Fuel Processing Technology, 2017, 158, 1-8.	7.2	71
10	Surfactant free synthesis and characterization of poly(vinyl carbazole) microgel and its chemical modifications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 243-250.	4.7	5
11	A facile preparation of donut-like supramolecular tannic acid-Fe(III) composite as biomaterials with magnetic, conductive, and antioxidant properties. Journal of Coordination Chemistry, 2017, 70, 3619-3632.	2.2	25
12	Various amine functionalized halloysite nanotube as efficient metal free catalysts for H 2 generation from sodium borohydride methanolysis. Applied Clay Science, 2017, 146, 517-525.	5. 2	53
13	Functionalization of Carbon Particles by Atom Transfer Radical Polymerization. MRS Advances, 2017, 2, 2537-2544.	0.9	O
14	OD, 1D, 2D, and 3D Soft and Hard Templates for Catalysis. Studies in Surface Science and Catalysis, 2017, , 317-357.	1.5	2
15	Quaternized polymeric microgels as metal free catalyst for H2 production from the methanolysis of sodium borohydride. Journal of Power Sources, 2016, 336, 27-34.	7.8	60
16	Tannic acid decorated poly(methacrylic acid) micro and nanoparticles with controllable tannic acid release and antioxidant properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 30-38.	4.7	13
17	Poly(vinyl phosphonic acid) nanogels with tailored properties and their use for biomedical and environmental applications. European Polymer Journal, 2016, 75, 264-275.	5.4	29
18	Reusable Soft Hydrogels for Gold Recovery from Acidic Environments. Separation Science and Technology, 2013, 48, 805-812.	2.5	9

#	Article	IF	CITATIONS
19	p(AAGA) hydrogel reactor for in situ Co and Ni nanoparticle preparation and use in hydrogen generation from the hydrolysis of sodium borohydride. Chemical Engineering Science, 2012, 82, 114-120.	3.8	38
20	Soft hydrogels for dual use: Template for metal nanoparticle synthesis and a reactor in the reduction of nitrophenols. Journal of Non-Crystalline Solids, 2012, 358, 758-764.	3.1	38
21	Modifiable chemically crosslinked poli(β-carrageenan) particles. Carbohydrate Polymers, 2012, 87, 2718-2724.	10.2	47
22	Novel hydrogel particles and their IPN films as drug delivery systems with antibacterial properties. Colloids and Surfaces B: Biointerfaces, 2012, 89, 248-253.	5.0	54
23	Utilization of Smart Hydrogel–Metal Composites as Catalysis Media. Journal of Colloid and Interface Science, 2012, 373, 122-128.	9.4	68
24	Porous and modified HA particles as potential drug delivery systems. Microporous and Mesoporous Materials, 2012, 155, 124-130.	4.4	29
25	A versatile hydrogel template for metal nano particle preparation and their use in catalysis. Polymer, 2011, 52, 4834-4840.	3.8	95
26	Hydrogel particles with core shell morphology for versatile applications: Environmental, biomedical and catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 386, 16-24.	4.7	32
27	Hydrogel templated CdS quantum dots synthesis and their characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389, 6-11.	4.7	29
28	Hyaluronic acid hydrogel particles with tunable charges as potential drug delivery devices. Carbohydrate Polymers, 2011, 84, 1306-1313.	10.2	60
29	One-step fabrication of biocompatible carboxymethyl cellulose polymeric particles for drug delivery systems. Carbohydrate Polymers, 2011, 86, 636-643.	10.2	112
30	Soft hydrogel particles with high functional value. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 74-84.	4.7	21
31	Micelles and â€reverse micelles' with a novel water-soluble diblock copolymer. Polymer, 2008, 49, 4057-4065.	3.8	21
32	SiO2 PARTICLE EMBEDDED SILICA AEROGELS: ENVIRONMENTAL AND ENERGY APPLICATIONS. EskiÅŸehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 0, , .	0.8	1