
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/973817/publications.pdf Version: 2024-02-01

Μλαιλ Ελ77λαι

#	Article	IF	CITATIONS
1	Novel insights on GM1 and Parkinson's disease: A critical review. Glycoconjugate Journal, 2022, 39, 27.	2.7	8
2	Gangliosides and the Treatment of Neurodegenerative Diseases: A Long Italian Tradition. Biomedicines, 2022, 10, 363.	3.2	13
3	Turning the spotlight on the oligosaccharide chain of GM1 ganglioside. Glycoconjugate Journal, 2021, 38, 101-117.	2.7	19
4	The structure of gangliosides hides a code for determining neuronal functions. FEBS Open Bio, 2021, 11, 3193-3200.	2.3	18
5	A pathogenic HEXA missense variant in wild boars with Tay-Sachs disease. Molecular Genetics and Metabolism, 2021, 133, 297-306.	1.1	2
6	Glycans in autophagy, endocytosis and lysosomal functions. Glycoconjugate Journal, 2021, 38, 625-647.	2.7	15
7	Glycosphingolipids. Advances in Experimental Medicine and Biology, 2021, 1325, 61-102.	1.6	11
8	Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. Journal of Lipid Research, 2020, 61, 636-654.	4.2	88
9	Modulation of calcium signaling depends on the oligosaccharide of GM1 in Neuro2a mouse neuroblastoma cells. Glycoconjugate Journal, 2020, 37, 713-727.	2.7	12
10	Homeostatic and pathogenic roles of <scp>GM</scp> 3 ganglioside molecular species in <scp>TLR</scp> 4 signaling in obesity. EMBO Journal, 2020, 39, e101732.	7.8	25
11	Gangliosides in the differentiation process of primary neurons: the specific role of GM1-oligosaccharide. Glycoconjugate Journal, 2020, 37, 329-343.	2.7	22
12	GM1 as Adjuvant of Innovative Therapies for Cystic Fibrosis Disease. International Journal of Molecular Sciences, 2020, 21, 4486.	4.1	11
13	Impact of glycoscience in fighting Covid-19. Glycoconjugate Journal, 2020, 37, 511-512.	2.7	5
14	GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 868.	4.1	91
15	The oligosaccharide portion of ganglioside GM1 regulates mitochondrial function in neuroblastoma cells. Clycoconjugate Journal, 2020, 37, 293-306.	2.7	18
16	GM1 Oligosaccharide Crosses the Human Blood–Brain Barrier In Vitro by a Paracellular Route. International Journal of Molecular Sciences, 2020, 21, 2858.	4.1	29
17	Sphingolipids and neuronal degeneration in lysosomal storage disorders. Journal of Neurochemistry, 2019, 148, 600-611.	3.9	37
18	Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Frontiers in Pharmacology, 2019, 10, 807.	3.5	72

#	Article	IF	CITATIONS
19	The international Glycoconjugate organization awards. Glycoconjugate Journal, 2019, 36, 237-237.	2.7	1
20	Splicing Mutations Impairing CDKL5 Expression and Activity Can be Efficiently Rescued by U1snRNA-Based Therapy. International Journal of Molecular Sciences, 2019, 20, 4130.	4.1	24
21	Aminoglycoside drugs induce efficient read-through of <i>CDKL5</i> nonsense mutations, slightly restoring its kinase activity. RNA Biology, 2019, 16, 1414-1423.	3.1	19
22	The Neuroprotective Role of the GM1 Oligosaccharide, II3Neu5Ac-Gg4, in Neuroblastoma Cells. Molecular Neurobiology, 2019, 56, 6673-6702.	4.0	19
23	<scp>GM</scp> 1 promotes TrkAâ€mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. Journal of Neurochemistry, 2019, 149, 231-241.	3.9	30
24	Parkinson's disease recovery by GM1 oligosaccharide treatment in the B4galnt1+/â^' mouse model. Scientific Reports, 2019, 9, 19330.	3.3	34
25	Human Remyelination Promoting Antibody Stimulates Astrocytes Proliferation Through Modulation of the Sphingolipid Rheostat in Primary Rat Mixed Glial Cultures. Neurochemical Research, 2019, 44, 1460-1474.	3.3	8
26	On the use of cholera toxin. Glycoconjugate Journal, 2018, 35, 161-163.	2.7	14
27	Crossâ€ŧalk between sphingosineâ€1â€phosphate and <scp>EGFR</scp> signaling pathways enhances human glioblastoma cell invasiveness. FEBS Letters, 2018, 592, 949-961.	2.8	17
28	Abiraterone and Ionizing Radiation Alter the Sphingolipid Homeostasis in Prostate Cancer Cells. Advances in Experimental Medicine and Biology, 2018, 1112, 293-307.	1.6	5
29	Introduction: the Glycobiology of nervous system. Glycoconjugate Journal, 2018, 35, 343-344.	2.7	1
30	New horizons in Glycobiology research. FEBS Letters, 2018, 592, 3771-3772.	2.8	0
31	Biochemical Characterization of the GBA2 c.1780G>C Missense Mutation in Lymphoblastoid Cells from Patients with Spastic Ataxia. International Journal of Molecular Sciences, 2018, 19, 3099.	4.1	11
32	Radioactive Gangliosides for Biological Studies. Methods in Molecular Biology, 2018, 1804, 311-322.	0.9	4
33	A lysosomeâ€plasma membraneâ€sphingolipid axis linking lysosomal storage to cell growth arrest. FASEB Journal, 2018, 32, 5685-5702.	0.5	32
34	Assignment by Negative-Ion Electrospray Tandem Mass Spectrometry of the Tetrasaccharide Backbones of Monosialylated Glycans Released from Bovine Brain Gangliosides. Journal of the American Society for Mass Spectrometry, 2018, 29, 1308-1318.	2.8	3
35	Editorial. Glycoconjugate Journal, 2018, 35, 1-1.	2.7	0
36	Neuronal membrane dynamics as fine regulator of sphingolipid composition. Glycoconjugate Journal, 2018, 35, 397-402.	2.7	6

MARIA FAZZARI

#	Article	IF	CITATIONS
37	Gangliosides in Membrane Organization. Progress in Molecular Biology and Translational Science, 2018, 156, 83-120.	1.7	48
38	Chemical and Physicochemical Properties of Gangliosides. Methods in Molecular Biology, 2018, 1804, 1-17.	0.9	5
39	Nuclear Magnetic Resonance of Gangliosides. Methods in Molecular Biology, 2018, 1804, 241-284.	0.9	3
40	Serum Antibodies to Glycans in Peripheral Neuropathies. Molecular Neurobiology, 2017, 54, 1564-1567.	4.0	9
41	Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation. Journal of Biological Chemistry, 2017, 292, 7040-7051.	3.4	15
42	CDKL5 localizes at the centrosome and midbody and is required for faithful cell division. Scientific Reports, 2017, 7, 6228.	3.3	27
43	Role of the <scp>GM</scp> 1 ganglioside oligosaccharide portion in the TrkAâ€dependent neurite sprouting in neuroblastoma cells. Journal of Neurochemistry, 2017, 143, 645-659.	3.9	53
44	Evidence for the Involvement of Lipid Rafts and Plasma Membrane Sphingolipid Hydrolases in Pseudomonas aeruginosa Infection of Cystic Fibrosis Bronchial Epithelial Cells. Mediators of Inflammation, 2017, 2017, 1-16.	3.0	16
45	Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chemistry and Physics of Lipids, 2016, 200, 94-103.	3.2	26
46	The role of sphingolipids in neuronal plasticity of the brain. Journal of Neurochemistry, 2016, 137, 485-488.	3.9	33
47	Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Science Signaling, 2016, 9, ra101.	3.6	58
48	The Role of 3-O-Sulfogalactosylceramide, Sulfatide, in the Lateral Organization of Myelin Membrane. Neurochemical Research, 2016, 41, 130-143.	3.3	35
49	CM1 Ganglioside: Past Studies and Future Potential. Molecular Neurobiology, 2016, 53, 1824-1842.	4.0	112
50	Isolation and Analysis of Detergent-Resistant Membrane Fractions. Methods in Molecular Biology, 2016, 1376, 107-131.	0.9	17
51	Membrane lipid domains in the nervous system. Frontiers in Bioscience - Landmark, 2015, 20, 280-302.	3.0	28
52	Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. Journal of Lipid Research, 2015, 56, 129-141.	4.2	46
53	Lipid membrane domains in the brain. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1006-1016.	2.4	106
54	Phosphatidic acidâ€mediated activation and translocation to the cell surface of sialidase NEU3, promoting signaling for cell migration. FASEB Journal, 2015, 29, 2099-2111.	0.5	23

#	Article	IF	CITATIONS
55	GBA2-Encoded Î ² -Glucosidase Activity Is Involved in the Inflammatory Response to Pseudomonas aeruginosa. PLoS ONE, 2014, 9, e104763.	2.5	19
56	Lipid Rafts in Neurodegeneration and Neuroprotection. Molecular Neurobiology, 2014, 50, 130-148.	4.0	74
57	Chaperone Therapy for GM2 Gangliosidosis: Effects of Pyrimethamine on β-Hexosaminidase Activity in Sandhoff Fibroblasts. Molecular Neurobiology, 2014, 50, 159-167.	4.0	30
58	iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis. Nature Communications, 2014, 5, 4028.	12.8	436
59	Gangliosides and Cell Surface Ganglioside Glycohydrolases in the Nervous System. Advances in Neurobiology, 2014, 9, 223-244.	1.8	15
60	Gangliosides as regulators of cell signaling: gangliosideâ€protein interactions or gangliosideâ€driven membrane organization?. Journal of Neurochemistry, 2013, 124, 432-435.	3.9	33
61	Interactions Between Caveolin-1 and Sphingolipids, and Their Functional Relevance. Advances in Experimental Medicine and Biology, 2012, 749, 97-115.	1.6	4
62	lonizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content. Glycoconjugate Journal, 2012, 29, 585-597.	2.7	22
63	Plasma Membrane-Associated Glycohydrolases Activation by Extracellular Acidification due to Proton Exchangers. Neurochemical Research, 2012, 37, 1296-1307.	3.3	14
64	Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. Journal of Neurochemistry, 2011, 116, 891-899.	3.9	44
65	The Fourth ISN Special Neurochemistry Conference -"Membrane domains in CNS Physiology and Pathologyâ€, Erice, Trapani, Sicily, 22-26 May 2010. Journal of Neurochemistry, 2011, 116, 669-670.	3.9	1
66	Secondary Alterations of Sphingolipid Metabolism in Lysosomal Storage Diseases. Neurochemical Research, 2011, 36, 1654-1668.	3.3	31
67	Role of Gangliosides and Plasma Membrane-Associated Sialidase in the Process of Cell Membrane Organization. Advances in Experimental Medicine and Biology, 2011, 705, 297-316.	1.6	10
68	Deregulated Sphingolipid Metabolism and Membrane Organization in Neurodegenerative Disorders. Molecular Neurobiology, 2010, 41, 314-340.	4.0	117
69	Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membraneâ€associated glycohydrolases. FEBS Letters, 2010, 584, 1914-1922.	2.8	40
70	Gangliosides as Regulators of Cell Membrane Organization and Functions. Advances in Experimental Medicine and Biology, 2010, 688, 165-184.	1.6	49
71	Sphingolipids and membrane environments for caveolin. FEBS Letters, 2009, 583, 597-606.	2.8	53
72	Thin layer chromatography of gangliosides. Glycoconjugate Journal, 2009, 26, 961-973.	2.7	32

#	Article	IF	CITATIONS
73	Alterations of myelinâ€specific proteins and sphingolipids characterize the brains of acid sphingomyelinaseâ€deficient mice, an animal model of Niemann–Pick disease type A. Journal of Neurochemistry, 2009, 109, 105-115.	3.9	30
74	Glycosphingolipid behaviour in complex membranes. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 184-193.	2.6	128
75	Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconjugate Journal, 2008, 25, 357-374.	2.7	101
76	Lipid content of brain, brain membrane lipid domains, and neurons from acid sphingomyelinase deficient mice. Journal of Neurochemistry, 2008, 107, 329-338.	3.9	53
77	Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. Journal of Leukocyte Biology, 2008, 83, 728-741.	3.3	83
78	Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13678-13683.	7.1	344
79	Gangliosides as components of lipid membrane domains. Glycobiology, 2007, 17, 1R-13R.	2.5	296
80	Induction of axonal differentiation by silencing plasma membrane-associated sialidase Neu3 in neuroblastoma cells. Journal of Neurochemistry, 2007, 100, 708-719.	3.9	37
81	Dynamic and Structural Properties of Sphingolipids as Driving Forces for the Formation of Membrane Domains. Chemical Reviews, 2006, 106, 2111-2125.	47.7	167
82	Efflux of sphingolipids metabolically labeled with [1-3H]sphingosine, L-[3-3H]serine and [9,10-3H]palmitic acid from normal cells in culture. Glycoconjugate Journal, 2006, 23, 159-165.	2.7	17
83	Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB Journal, 2006, 20, 1227-1229.	0.5	106
84	Interactions between gangliosides and proteins in the exoplasmic leaflet of neuronal plasma membranes: A study performed with a tritium-labeled GM1 derivative containing a photoactivable group linked to the oligosaccharide chain. Glycoconjugate Journal, 2004, 21, 461-470.	2.7	24
85	Synthesis of radioactive and photoactivable ganglioside derivatives for the study of ganglioside-protein interactions. Glycoconjugate Journal, 2003, 20, 11-23.	2.7	26
86	The adhesion protein TAGâ€1 has a ganglioside environment in the sphingolipidâ€enriched membrane domains of neuronal cells in culture. Journal of Neurochemistry, 2003, 85, 224-233.	3.9	42
87	Dynamics of membrane lipid domains in neuronal cells differentiated in culture. Journal of Lipid Research, 2003, 44, 2142-2151.	4.2	72
88	Changes of Free Long-Chain Bases in Neuronal Cells During Differentiation and Aging in Culture. Journal of Neurochemistry, 2002, 67, 1866-1871.	3.9	15
89	GM3 Ganglioside Inhibits CD9-Facilitated Haptotactic Cell Motility:Â Coexpression of GM3 and CD9 Is Essential in the Downregulation of Tumor Cell Motility and Malignancyâ€. Biochemistry, 2001, 40, 6414-6421.	2.5	140
90	Immunoseparation of sphingolipid-enriched membrane domains enriched in Src family protein tyrosine kinases and in the neuronal adhesion molecule TAG-1 by anti-GD3 ganglioside monoclonal antibody. Journal of Neurochemistry, 2001, 78, 1162-1167.	3.9	73

#	Article	IF	CITATIONS
91	Exogenous Sphingosine Enters Xenopus Laevis Embryos Grown in Petri Dishes and It Is Metabolized. Bioscience Reports, 2001, 21, 719-731.	2.4	2
92	Changes in the Lipid Turnover, Composition, and Organization, as Sphingolipid-enriched Membrane Domains, in Rat Cerebellar Granule Cells Developing in Vitro. Journal of Biological Chemistry, 2001, 276, 21136-21145.	3.4	163
93	Role of Glycosphingolipids in Formation and Function of Membrane Microdomains. Trends in Glycoscience and Glycotechnology, 2001, 13, 239-250.	0.1	8
94	[50] Preparation of radioactive gangliosides, 3H or 14C isotopically labeled at oligosaccharide or ceramide moieties. Methods in Enzymology, 2000, 311, 639-656.	1.0	31
95	Evidence that ganglioside enriched domains are distinct from caveolae in MDCK II and human fibroblast cells in culture. FEBS Journal, 2000, 267, 4187-4197.	0.2	76
96	Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. BBA - Biomembranes, 2000, 1469, 63-77.	8.0	144
97	New approaches to the study of sphingolipid enriched membrane domains: the use of electron microscopic autoradiography to reveal metabolically tritium labeled sphingolipids in cell cultures. Glycoconjugate Journal, 2000, 17, 261-268.	2.7	5
98	Glycosphingolipids and membrane domains. Glycoconjugate Journal, 2000, 17, 141-141.	2.7	0
99	Sphingolipid-enriched Membrane Domains from Rat Cerebellar Granule Cells Differentiated in Culture. Journal of Biological Chemistry, 2000, 275, 11658-11665.	3.4	151
100	A procedure for the preparation of GM3 ganglioside from GM1-lactone. Glycoconjugate Journal, 1999, 16, 197-203.	2.7	22
101	Conformation of the Oligosaccharide Chain of GM1 Ganglioside in a Carbohydrate-Enriched Surface. Biophysical Journal, 1998, 74, 309-318.	0.5	74
102	Age-related changes of the ganglioside long-chain base composition in rat cerebellum. Neurochemistry International, 1996, 28, 183-187.	3.8	18
103	Nuclear Overhauser effect investigation on GM1 ganglioside containingN-glycolyl-neuraminic acid (II3Neu5GcGgOse4Cer). Glycoconjugate Journal, 1996, 13, 57-62.	2.7	22
104	Evaluation of the efficiency of an assay procedure for gangliosides in human serum. Glycoconjugate Journal, 1996, 13, 347-352.	2.7	19
105	Preparation of rediolabeled gangliosides. Clycobiology, 1996, 6, 479-487.	2.5	45
106	Isolation and Structural Characterization of N-Acetyl- and N-Glycolylneuraminic-Acid-Containing GalNAc-GD1a Isomers, IV4GalNAcIV3Neu5AcII3Neu5GcGgOse4Cer and IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer, from Bovine Brain. FEBS Journal, 1995, 234, 786-793.	0.2	13
107	The anti-oligosaccharide antibodies present in sera from patients with motor neuron disease and neuropathy recognize theN-glycolylneuraminic acid containing gangliotetrahexosyl oligosaccharide. Glycoconjugate Journal, 1995, 12, 729-731.	2.7	3
108	A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Letters, 1995, 375, 11-14.	2.8	169

#	Article	IF	CITATIONS
109	Aggregative properties of gangliosides in solution. Chemistry and Physics of Lipids, 1994, 71, 21-45.	3.2	151
110	Characterization of a complex mixture of ceramides by fast atom bombardment and precursor and fragment analysis tandem mass spectrometry. Biological Mass Spectrometry, 1994, 23, 82-90.	0.5	17
111	Geometrical and Conformational Properties of Ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. FEBS Journal, 1994, 225, 271-288.	0.2	62
112	Biosynthesis of gangliosides containing C18:1 and C20:1 [3-14C]sphingosine after administrating [1-14C]palmitic acid and [1-14C]stearic acid to rat cerebellar granule cells in culture. FEBS Journal, 1994, 221, 1095-1101.	0.2	16
113	1H-NMR study on ganglioside amide protons: evidence that the deuterium exchange kinetics are affected by the preparation of samples. Glycoconjugate Journal, 1993, 10, 441-446.	2.7	17
114	Changes in the Ganglioside Long-Chain Base Composition of Rat Cerebellar Granule Cells During Differentiation and Aging in Culture. Journal of Neurochemistry, 1993, 60, 193-196.	3.9	34
115	Specific ganglioside-cell protein interactions: A study performed with GM1 ganglioside derivative containing photoactivable azide and rat cerebellar granule cells in culture. Neurochemistry International, 1992, 20, 315-321.	3.8	31
116	Formation of free sphingosine and ceramide from exogenous ganglioside GM1 by cerebellar granule cells in culture. FEBS Letters, 1992, 300, 188-192.	2.8	51
117	Rat cerebellar granule cells in culture associate and metabolize differently exogenous GM1 ganglioside molecular species containing a C18 or C20 long chain base. Chemistry and Physics of Lipids, 1992, 60, 247-252.	3.2	18
118	Characterization of sphingosine long-chain bases by fast atom bombardment and high-energy collision-induced decomposition tandem mass spectrometry. Organic Mass Spectrometry, 1992, 27, 1357-1364.	1.3	7
119	Lack of the Ganglioside Molecular Species Containing the C20-Long-Chain Bases in Human, Rat, Mouse, Rabbit, Cat, Dog, and Chicken Brains During Prenatal Life. Journal of Neurochemistry, 1991, 56, 2048-2050.	3.9	32
120	Exogenous Gangliosides GD1b and GD1b-Lactone, Stably Associated to Rat Brain P2Subcellular Fraction, Modulate Differently the Process of Protein Phosphorylation. Journal of Neurochemistry, 1991, 57, 1207-1211.	3.9	40
121	Further Studies on the Changes of Chicken Brain Gangliosides During Prenatal and Postnatal Life. Journal of Neurochemistry, 1990, 54, 1653-1660.	3.9	23
122	Three-dimensional structure of the oligosaccharide chain of GM1 ganglioside revealed by a distance-mapping procedure: a rotating and laboratory frame nuclear overhauser enhancement investigation of native glycolipid in dimethyl sulfoxide and in water-dodecylphosphocholine solutions. Journal of the American Chemical Society, 1990, 112, 7772-7778.	13.7	158
123	Formation of tritium-labeled polysialylated gangliosides in the cytosol of rat cerebellar granule cells in culture following administration of [3H]GM1 ganglioside. FEBS Letters, 1990, 277, 164-166.	2.8	4
124	Formation of a cytosolic ganglioside-protein complex following administration of photoreactive ganglioside GM1 to human fibroblasts in culture. FEBS Letters, 1990, 263, 329-331.	2.8	40
125	A photoreactive derivative of radiolabeled GM1 ganglioside: preparation and use to establish the involvement of specific proteins in GM1 uptake by human fibroblasts in culture. Biochemistry, 1989, 28, 77-84.	2.5	89
126	Synthesis and structural characterization of the dilactone derivative of GD1a ganglioside. Carbohydrate Research, 1988, 182, 31-40.	2.3	20

#	Article	IF	CITATIONS
127	Light scattering measurements on gangliosides: Dependence of micellar properties on molecular structure and temperature. Chemistry and Physics of Lipids, 1986, 41, 315-328.	3.2	70
128	Association of gangliosides to fibroblasts in culture: A study performed with GM1 [14C]-labelled at the sialic acid acetyl group. Glycoconjugate Journal, 1985, 2, 279-291.	2.7	66
129	Synthesis of GM1-Ganglioside Inner Ester. Glycoconjugate Journal, 1985, 2, 343-354.	2.7	33
130	Promotion of Neuritogenesis in Mouse Neuroblastoma Cells by Exogenous Gangliosides. Relationship Between the Effect and the Cell Association of Ganglioside GM1. Journal of Neurochemistry, 1984, 42, 299-305.	3.9	205
131	Canglioside Pattern of Normal Human Brain, from Samples Obtained at Surgery. A Study Especially Referred to Alkali Labile Species. Journal of Biochemistry, 1984, 96, 1943-1946.	1.7	19
132	Galactose oxidase action on GM1 ganglioside in micellar and vesicular dispersions. Biochimica Et Biophysica Acta - Biomembranes, 1982, 688, 333-340.	2.6	24
133	Interactions of ganglioside GM1 with human and fetal calf sera. Formation of ganglioside-serum albumin complexes. Biochimica Et Biophysica Acta - Biomembranes, 1982, 692, 18-26.	2.6	40
134	Activation of (Na+, K+)-ATPase by Nanomolar Concentrations of GM1Ganglioside. Journal of Neurochemistry, 1981, 37, 350-357.	3.9	222
135	Changes in Rabbit Brain Cytosolic and Membrane-Bound Gangliosides During Prenatal Life. Journal of Neurochemistry, 1981, 36, 227-232.	3.9	54
136	Interaction of GM1 Ganglioside with Bovine Serum Albumin Formation and Isolation of Multiple Complexes. FEBS Journal, 1980, 111, 315-324.	0.2	58
137	CYTOSOLIC GANGLIOSIDES: OCCURRENCE IN CALF BRAIN AS GANGLIOSIDE-PROTEIN COMPLEXES. Journal of Neurochemistry, 1979, 33, 117-121.	3.9	70