Jiajing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/97380/publications.pdf Version: 2024-02-01

Ιμινς Ζησιι

#	Article	IF	CITATIONS
1	Mussel-Inspired Synthesis of Polydopamine-Functionalized Graphene Hydrogel as Reusable Adsorbents for Water Purification. ACS Applied Materials & Interfaces, 2013, 5, 425-432.	8.0	633
2	Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. ACS Nano, 2018, 12, 2643-2651.	14.6	294
3	Polyphenol-Mediated Assembly for Particle Engineering. Accounts of Chemical Research, 2020, 53, 1269-1278.	15.6	244
4	Versatile Core–Shell Nanoparticle@Metal–Organic Framework Nanohybrids: Exploiting Mussel-Inspired Polydopamine for Tailored Structural Integration. ACS Nano, 2015, 9, 6951-6960.	14.6	223
5	Interfacial Assembly of Musselâ€inspired Au@Ag@ Polydopamine Core–Shell Nanoparticles for Recyclable Nanocatalysts. Advanced Materials, 2014, 26, 701-705.	21.0	196
6	SERS-Encoded Nanogapped Plasmonic Nanoparticles: Growth of Metallic Nanoshell by Templating Redox-Active Polymer Brushes. Journal of the American Chemical Society, 2014, 136, 6838-6841.	13.7	174
7	Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chemical Society Reviews, 2021, 50, 4432-4483.	38.1	163
8	Polyphenolâ€Mediated Assembly of Proteins for Engineering Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 15618-15625.	13.8	138
9	Metal–Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles. ACS Nano, 2019, 13, 11653-11664.	14.6	128
10	Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality. ACS Nano, 2016, 10, 11066-11075.	14.6	109
11	Magnetic nanochain integrated microfluidic biochips. Nature Communications, 2018, 9, 1743.	12.8	94
12	Ordered Mesoporous Metal–Phenolic Network Particles. Journal of the American Chemical Society, 2020, 142, 335-341.	13.7	85
13	Multifunctional Magnetic Nanochains: Exploiting Self-Polymerization and Versatile Reactivity of Mussel-Inspired Polydopamine. Chemistry of Materials, 2015, 27, 3071-3076.	6.7	81
14	Particle engineering enabled by polyphenol-mediated supramolecular networks. Nature Communications, 2020, 11, 4804.	12.8	65
15	Polyphenol-Based Nanoparticles for Intracellular Protein Delivery <i>via</i> Competing Supramolecular Interactions. ACS Nano, 2020, 14, 12972-12981.	14.6	56
16	Mesoporous polydopamine with built-in plasmonic core: Traceable and NIR triggered delivery of functional proteins. Biomaterials, 2020, 238, 119847.	11.4	54
17	A Chargeâ€5witchable Zwitterionic Peptide for Rapid Detection of SARSâ€CoVâ€2 Main Protease. Angewandte Chemie - International Edition, 2022, 61, .	13.8	54
18	Gold Nanorod–Melanin Hybrids for Enhanced and Prolonged Photoacoustic Imaging in the Near-Infrared-II Window. ACS Applied Materials & Interfaces, 2021, 13, 14974-14984.	8.0	43

JIAJING ZHOU

#	Article	IF	CITATIONS
19	Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Research, 2020, 13, 238-245.	10.4	42
20	Robust Nanoparticle–DNA Conjugates Based on Mussel-Inspired Polydopamine Coating for Cell Imaging and Tailored Self-Assembly. Bioconjugate Chemistry, 2016, 27, 815-823.	3.6	39
21	In Vitro and In Vivo Photothermal Cancer Therapeutic Effects of Gold Nanorods Modified with Mushroom Î ² -Glucan. Journal of Agricultural and Food Chemistry, 2018, 66, 4091-4098.	5.2	39
22	Programmable Permeability of Metal–Phenolic Network Microcapsules. Chemistry of Materials, 2020, 32, 6975-6982.	6.7	38
23	Assembly of Bioactive Nanoparticles via Metal–Phenolic Complexation. Advanced Materials, 2022, 34, e2108624.	21.0	34
24	A synergistic optical strategy for enhanced deep-tumor penetration and therapy in the second near-infrared window. Materials Horizons, 2020, 7, 2929-2935.	12.2	33
25	Stable and Biocompatible Mushroom β-Glucan Modified Gold Nanorods for Cancer Photothermal Therapy. Journal of Agricultural and Food Chemistry, 2017, 65, 9529-9536.	5.2	30
26	Stereoselective Growth of Small Molecule Patches on Nanoparticles. Journal of the American Chemical Society, 2021, 143, 12138-12144.	13.7	30
27	Responsive Amorphous Photonic Structures of Spherical/Polyhedral Colloidal Metal–Organic Frameworks. Advanced Optical Materials, 2019, 7, 1900522.	7.3	27
28	Selective Metal–Phenolic Assembly from Complex Multicomponent Mixtures. ACS Applied Materials & Interfaces, 2019, 11, 17714-17721.	8.0	27
29	Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and <i>Ex Vivo</i> Particle–Immune Cell Interactions in Human Blood. ACS Nano, 2021, 15, 10025-10038.	14.6	27
30	Luminescent Metalâ€Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie - International Edition, 2021, 60, 24968-24975.	13.8	27
31	Functional Macromoleculeâ€Enabled Colloidal Synthesis: From Nanoparticle Engineering to Multifunctionality. Advanced Materials, 2019, 31, e1902733.	21.0	25
32	Templateâ€Mediated Assembly of DNA into Microcapsules for Immunological Modulation. Small, 2020, 16, e2002750.	10.0	25
33	Musselâ€Inspired Dualâ€5uperlyophobic Biomass Membranes for Selective Oil/Water Separation. Advanced Materials Interfaces, 2020, 7, 1901756.	3.7	25
34	Peptide-Induced Fractal Assembly of Silver Nanoparticles for Visual Detection of Disease Biomarkers. ACS Nano, 2022, 16, 6165-6175.	14.6	25
35	Metal–Phenolic Networks as Tunable Buffering Systems. Chemistry of Materials, 2021, 33, 2557-2566.	6.7	21
36	One-Step Supramolecular Multifunctional Coating on Plant Virus Nanoparticles for Bioimaging and Therapeutic Applications. ACS Applied Materials & Interfaces, 2022, 14, 13692-13702.	8.0	21

JIAJING ZHOU

#	Article	IF	CITATIONS
37	Engineering Biocoatings To Prolong Drug Release from Supraparticles. Biomacromolecules, 2019, 20, 3425-3434.	5.4	20
38	Ricocheting Droplets Moving on Superâ€Repellent Surfaces. Advanced Science, 2019, 6, 1901846.	11.2	20
39	Bioinspired Production of Noniridescent Structural Colors by Adhesive Melanin-like Particles. Langmuir, 2019, 35, 9878-9884.	3.5	19
40	Ultrasmall gold nanorod-polydopamine hybrids for enhanced photoacoustic imaging and photothermal therapy in second near-infrared window. Nanotheranostics, 2022, 6, 79-90.	5.2	19
41	Enhanced Photoacoustic Detection of Heparin in Whole Blood <i>via</i> Melanin Nanocapsules Carrying Molecular Agents. ACS Nano, 2022, 16, 683-693.	14.6	19
42	Role of Molecular Interactions in Supramolecular Polypeptide–Polyphenol Networks for Engineering Functional Materials . Journal of the American Chemical Society, 2022, 144, 12510-12519.	13.7	19
43	Mapping Aerosolized Saliva on Face Coverings for Biosensing Applications. Analytical Chemistry, 2021, 93, 11025-11032.	6.5	18
44	Siteâ€Selective Coordination Assembly of Dynamic Metalâ€Phenolic Networks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
45	Polyphenolâ€Mediated Assembly of Proteins for Engineering Functional Materials. Angewandte Chemie, 2020, 132, 15748-15755.	2.0	17
46	Bioresponsive Polyphenol-Based Nanoparticles as Thrombolytic Drug Carriers. ACS Applied Materials & Interfaces, 2022, 14, 3740-3751.	8.0	17
47	Hierarchical Graphene/Metal–Organic Framework Composites with Tailored Wettability for Separation of Immiscible Liquids. ACS Applied Materials & Interfaces, 2020, 12, 35563-35571.	8.0	16
48	Programmable Phototaxis of Metal–Phenolic Particle Microswimmers. Advanced Materials, 2021, 33, e2006177.	21.0	16
49	The Application of Organic Nanomaterials for Bioimaging, Drug Delivery, and Therapy: Spanning Various Domains. IEEE Nanotechnology Magazine, 2021, 15, 8-28.	1.3	16
50	Peptidic Sulfhydryl for Interfacing Nanocrystals and Subsequent Sensing of SARS-CoV-2 Protease. Chemistry of Materials, 2022, 34, 1259-1268.	6.7	16
51	Modulation of Gold Nanorod Growth via the Proteolysis of Dithiol Peptides for Enzymatic Biomarker Detection. ACS Applied Materials & Interfaces, 2021, 13, 45236-45243.	8.0	15
52	Versatile Polymer Nanocapsules via Redox Competition. Angewandte Chemie - International Edition, 2021, 60, 26357-26362.	13.8	15
53	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. Angewandte Chemie - International Edition, 2021, 60, 20225-20230.	13.8	14
54	Selfâ€Assembly of Polymerâ€Coated Plasmonic Nanocrystals: From Synthetic Approaches to Practical Applications. Macromolecular Rapid Communications, 2019, 40, e1800613.	3.9	11

JIAJING ZHOU

#	Article	IF	CITATIONS
55	Nanoengineering multifunctional hybrid interfaces using adhesive glycogen nanoparticles. Journal of Materials Chemistry B, 2020, 8, 4851-4858.	5.8	10
56	Quantitatively Tracking Bio–Nano Interactions of Metal–Phenolic Nanocapsules by Mass Cytometry. ACS Applied Materials & Interfaces, 2021, 13, 35494-35505.	8.0	9
57	A fiber optic photoacoustic sensor for real-time heparin monitoring. Biosensors and Bioelectronics, 2022, 196, 113692.	10.1	9
58	Protein precoating modulates biomolecular coronas and nanocapsule–immune cell interactions in human blood. Journal of Materials Chemistry B, 2022, 10, 7607-7621.	5.8	9
59	Versatile Polymer Nanocapsules via Redox Competition. Angewandte Chemie, 0, , .	2.0	4
60	Luminescent Metal–Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie, 0, , .	2.0	4
61	Supramolecular Assembly of Multifunctional Collagen Nanocomposite Film via Polyphenol-Coordinated Clay Nanoplatelets. ACS Applied Bio Materials, 2022, 5, 1319-1329.	4.6	4
62	Photoacoustic Enhancement of Ferricyanide-Treated Silver Chalcogenide-Coated Gold Nanorods. Journal of Physical Chemistry C, 2022, 126, 7605-7614.	3.1	4
63	Hydro-Expandable Calcium Phosphate Micro/Nano-Particles with Controllable Size and Morphology for Mechanical Ablation. ACS Applied Nano Materials, 2021, 4, 3877-3886.	5.0	3
64	Siteâ€Selective Coordination Assembly of Dynamic Metal–Phenolic Networks. Angewandte Chemie, 0, , .	2.0	3
65	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. Angewandte Chemie, 2021, 133, 20387-20392.	2.0	2
66	A Chargeâ€Switchable Zwitterionic Peptide for Rapid Detection of SARSâ€CoVâ€2 Main Protease. Angewandte Chemie, 2022, 134, .	2.0	1