
Louis B Rice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9731216/publications.pdf Version: 2024-02-01

LOUIS R RICE

#	Article	IF	CITATIONS
1	The Shorter Is Better movement: past, present, future. Clinical Microbiology and Infection, 2023, 29, 141-142.	6.0	11
2	A Tribute to George A. Jacoby. Antimicrobial Agents and Chemotherapy, 2022, , e0049822.	3.2	0
3	Houston, We Have a Problem: Reports of <i>Clostridioides difficile</i> Isolates With Reduced Vancomycin Susceptibility. Clinical Infectious Diseases, 2022, 75, 1661-1664.	5.8	5
4	An Updated History of <i>Antimicrobial Agents and Chemotherapy</i> : 2000–2020. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	3
5	Enterococcal Physiology and Antimicrobial Resistance: The Streetlight Just Got a Little Brighter. MBio, 2021, 12, .	4.1	3
6	Resistance in Vancomycin-Resistant Enterococci. Infectious Disease Clinics of North America, 2020, 34, 751-771.	5.1	61
7	The Enterococcus: a Model of Adaptability to Its Environment. Clinical Microbiology Reviews, 2019, 32,	13.6	357
8	Reply to Koehler et al. Clinical Infectious Diseases, 2019, 69, 901-902.	5.8	1
9	Duration of Antibiotic Therapy: Shorter Is Better. Annals of Internal Medicine, 2019, 171, 210.	3.9	85
10	Structural and Regulatory Changes in PBP4 Trigger Decreased β-Lactam Susceptibility in Enterococcus faecalis. MBio, 2018, 9, .	4.1	32
11	A Review of Combination Antimicrobial Therapy for Enterococcus faecalis Bloodstream Infections and Infective Endocarditis. Clinical Infectious Diseases, 2018, 67, 303-309.	5.8	150
12	Acknowledgment of <i>Ad Hoc</i> Reviewers. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	0
13	Antimicrobial Stewardship and Antimicrobial Resistance. Medical Clinics of North America, 2018, 102, 805-818.	2.5	49
14	Acknowledgment of <i>Ad Hoc</i> Reviewers. Antimicrobial Agents and Chemotherapy, 2016, 60, 7007-7014.	3.2	0
15	Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli. ELife, 2016, 5, .	6.0	137
16	ASM Journals Eliminate Impact Factor Information from Journal Websites. Applied and Environmental Microbiology, 2016, 82, 5479-5480.	3.1	1
17	Homologous Recombination within Large Chromosomal Regions Facilitates Acquisition of β-Lactam and Vancomycin Resistance in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2016, 60, 5777-5786.	3.2	31
18	ASM Journals Eliminate Impact Factor Information from Journal Websites. MSystems, 2016, 1, .	3.8	3

Louis B Rice

#	Article	IF	CITATIONS
19	Vancomycin-Resistant Enterococci. Infectious Disease Clinics of North America, 2016, 30, 415-439.	5.1	90
20	Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium. MBio, 2016, 7, e02188-15.	4.1	17
21	ASM Journals Eliminate Impact Factor Information from Journal Websites. Microbiology and Molecular Biology Reviews, 2016, 80, i-ii.	6.6	1
22	ASM Journals Eliminate Impact Factor Information from Journal Websites. Antimicrobial Agents and Chemotherapy, 2016, 60, 5109-5110.	3.2	3
23	ASM Journals Eliminate Impact Factor Information from Journal Websites. Infection and Immunity, 2016, 84, 2407-2408.	2.2	9
24	ASM Journals Eliminate Impact Factor Information from Journal Websites. Journal of Clinical Microbiology, 2016, 54, 2216-2217.	3.9	7
25	ASM Journals Eliminate Impact Factor Information from Journal Websites. Clinical Microbiology Reviews, 2016, 29, i-ii.	13.6	4
26	ASM Journals Eliminate Impact Factor Information from Journal Websites. MBio, 2016, 7, .	4.1	16
27	ASM Journals Eliminate Impact Factor Information from Journal Websites. MSphere, 2016, 1, .	2.9	5
28	Genome Sequence of the Multiantibiotic-Resistant Enterococcus faecium Strain C68 and Insights on the pLRM23 Colonization Plasmid. Genome Announcements, 2016, 4, .	0.8	4
29	Draft Genome Sequence of Vancomycin-Susceptible, Ampicillin-Intermediate Enterococcus faecium Strain D344RRF. Genome Announcements, 2016, 4, .	0.8	2
30	Inhibition of bacterial and fungal pathogens by the orphaned drug auranofin. Future Medicinal Chemistry, 2016, 8, 117-132.	2.3	57
31	Ampicillin in Combination with Ceftaroline, Cefepime, or Ceftriaxone Demonstrates Equivalent Activities in a High-Inoculum Enterococcus faecalis Infection Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 3178-3182.	3.2	21
32	Mutation Landscape of Acquired Cross-Resistance to Glycopeptide and Î2-Lactam Antibiotics in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2015, 59, 5306-5315.	3.2	7
33	Differential Effects of Penicillin Binding Protein Deletion on the Susceptibility of Enterococcus faecium to Cationic Peptide Antibiotics. Antimicrobial Agents and Chemotherapy, 2015, 59, 6132-6139.	3.2	3
34	Vancomycin-Resistant Enterococci Colonization Among Dialysis Patients: A Meta-analysis of Prevalence, Risk Factors, andÂSignificance. American Journal of Kidney Diseases, 2015, 65, 88-97.	1.9	56
35	Serine/Threonine Protein Phosphatase-Mediated Control of the Peptidoglycan Cross-Linking <scp>l</scp> , <scp>d</scp> <scp>-</scp> Transpeptidase Pathway in Enterococcus faecium. MBio, 2014, 5, e01446-14.	4.1	25
36	The complex dynamics of antimicrobial activity in the human gastrointestinal tract. Transactions of the American Clinical and Climatological Association, 2013, 124, 123-32.	0.5	12

Louis B Rice

#	Article	IF	CITATIONS
37	Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, 2012, 3, 421-569.	4.4	529
38	Early Insights into the Interactions of Different β-Lactam Antibiotics and β-Lactamase Inhibitors against Soluble Forms of Acinetobacter baumannii PBP1a and Acinetobacter sp. PBP3. Antimicrobial Agents and Chemotherapy, 2012, 56, 5687-5692.	3.2	33
39	Mechanisms of Resistance and Clinical Relevance of Resistance to β-Lactams, Glycopeptides, and Fluoroquinolones. Mayo Clinic Proceedings, 2012, 87, 198-208.	3.0	144
40	Analysis of PBP5 of Early U.S. Isolates of Enterococcus faecium: Sequence Variation Alone Does Not Explain Increasing Ampicillin Resistance over Time. Antimicrobial Agents and Chemotherapy, 2011, 55, 3272-3277.	3.2	68
41	Multiple copies of functional, Tet(M)-encoding Tn916-like elements in a clinical Enterococcus faecium isolate. Plasmid, 2010, 64, 150-155.	1.4	12
42	Activation of the <scp>l</scp> , <scp>d</scp> â€ŧranspeptidation peptidoglycan crossâ€linking pathway by a metalloâ€ <scp>d</scp> , <scp>d</scp> â€ɛarboxypeptidase in <i>Enterococcus faecium</i> . Molecular Microbiology, 2010, 75, 874-885.	2.5	39
43	Role of Class A Penicillin-Binding Proteins in the Expression of β-Lactam Resistance in <i>Enterococcus faecium</i> . Journal of Bacteriology, 2009, 191, 3649-3656.	2.2	54
44	The Maxwell Finland Lecture: For the Duration- Rational Antibiotic Administration in an Era of Antimicrobial Resistance and Clostridium difficile. Clinical Infectious Diseases, 2008, 46, 491-496.	5.8	156
45	Interaction of Related Tn 916 -Like Transposons: Analysis of Excision Events Promoted by Tn 916 and Tn 5386 Integrases. Journal of Bacteriology, 2007, 189, 3909-3917.	2.2	9
46	Characterization of Tn5386, a Tn916-related mobile element. Plasmid, 2007, 58, 61-67.	1.4	14
47	Antimicrobial Resistance in Gram-Positive Bacteria. American Journal of Medicine, 2006, 119, S11-S19.	1.5	165
48	Antibiotic-Induced Enterococcal Expansion in the Mouse Intestine Occurs throughout the Small Bowel and Correlates Poorly with Suppression of Competing Flora. Antimicrobial Agents and Chemotherapy, 2006, 50, 3117-3123.	3.2	23
49	Structure-Activity Relationships of Different β-Lactam Antibiotics against a Soluble Form of Enterococcus faecium PBP5, a Type II Bacterial Transpeptidase. Antimicrobial Agents and Chemotherapy, 2005, 49, 612-618.	3.2	35
50	Enterococcus faecium Low-Affinity pbp5 Is a Transferable Determinant. Antimicrobial Agents and Chemotherapy, 2005, 49, 5007-5012.	3.2	47
51	In Vitro Antienterococcal Activity Explains Associations between Exposures to Antimicrobial Agents and Risk of Colonization by Multiresistant Enterococci. Journal of Infectious Diseases, 2004, 190, 2162-2166.	4.0	30
52	Impact of Specific pbp5 Mutations on Expression of β-Lactam Resistance in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2004, 48, 3028-3032.	3.2	112
53	Î²â€Łactam Antibiotics and Gastrointestinal Colonization with Vancomycinâ€Resistant Enterococci. Journal of Infectious Diseases, 2004, 189, 1113-1118.	4.0	73
54	Clinical-Use-Associated Decrease in Susceptibility of Vancomycin-Resistant Enterococcus faecium to Linezolid: a Comparison with Quinupristin-Dalfopristin. Antimicrobial Agents and Chemotherapy, 2004, 48, 3583-3585.	3.2	51

LOUIS B RICE

#	Article	IF	CITATIONS
55	A Potential Virulence Gene, <i>hyl</i> _{Efm} , Predominates in <i>Enterococcus faecium</i> of Clinical Origin. Journal of Infectious Diseases, 2003, 187, 508-512.	4.0	222
56	Role of Penicillin-Binding Protein 5 in Expression of Ampicillin Resistance and Peptidoglycan Structure in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2001, 45, 2594-2597.	3.2	82
57	Penicillin-Binding Protein 5 and Expression of Ampicillin Resistance in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2001, 45, 1480-1486.	3.2	85
58	High-Level Expression of Chromosomally Encoded SHV-1 β-Lactamase and an Outer Membrane Protein Change Confer Resistance to Ceftazidime and Piperacillin- Tazobactam in a Clinical Isolate of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2000, 44, 362-367.	3.2	122
59	\hat{I}^2 -Lactamases: which ones are clinically important?. Drug Resistance Updates, 2000, 3, 178-189.	14.4	45
60	Effect of Antibiotic Therapy on the Density of Vancomycin-Resistant Enterococci in the Stool of Colonized Patients. New England Journal of Medicine, 2000, 343, 1925-1932.	27.0	621
61	Tn <i>916</i> Family Conjugative Transposons and Dissemination of Antimicrobial Resistance Determinants. Antimicrobial Agents and Chemotherapy, 1998, 42, 1871-1877.	3.2	243
62	Genetic Linkage and Cotransfer of a Novel, <i>vanB</i> -Containing Transposon (Tn <i>5382</i>) and a Low-Affinity Penicillin-Binding Protein 5 Gene in a Clinical Vancomycin-Resistant <i>Enterococcus faecium</i> Isolate. Journal of Bacteriology, 1998, 180, 4426-4434.	2.2	178