Douglas G Mashek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/973053/publications.pdf

Version: 2024-02-01

82 papers 6,534 citations

38 h-index 71 g-index

85 all docs 85 docs citations

85 times ranked

9749 citing authors

#	Article	IF	CITATIONS
1	Regulation and role of glycophagy in skeletal muscle energy metabolism. Autophagy, 2022, 18, 1078-1089.	9.1	10
2	Perilipins at a glance. Journal of Cell Science, 2022, 135, .	2.0	24
3	Isolated and combined impact of dietary olive oil and exercise on markers of health and energy metabolism in female mice. Journal of Nutritional Biochemistry, 2022, 107, 109040.	4.2	2
4	Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Molecular Metabolism, 2021, 50, 101115.	6.5	106
5	Time-Restricted Eating for 12 Weeks Does Not Adversely Alter Bone Turnover in Overweight Adults. Nutrients, 2021, 13, 1155.	4.1	11
6	Time-Restricted Eating Improves Quality of Life Measures in Overweight Humans. Nutrients, 2021, 13, 1430.	4.1	18
7	Chromatin accessibility profiling identifies evolutionary conserved loci in activated human satellite cells. Stem Cell Research, 2021, 55, 102496.	0.7	4
8	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Ј _{.1} 50 4	62 Td (editior 1,430
9	Lipophagy-derived fatty acids undergo extracellular efflux via lysosomal exocytosis. Autophagy, 2021, 17, 690-705.	9.1	64
10	Hepatic lysosomal acid lipase overexpression worsens hepatic inflammation in mice fed a Western diet. Journal of Lipid Research, 2021, 62, 100133.	4.2	8
11	Phosphatase PHLPP2 regulates the cellular response to metabolic stress through AMPK. Cell Death and Disease, 2021, 12, 904.	6.3	9
12	The Underpinnings of PNPLA3â€Mediated Fatty Liver Emerge. Hepatology, 2020, 71, 375-377.	7.3	8
13	Lipid Droplet-Derived Monounsaturated Fatty Acids Traffic via PLIN5 to Allosterically Activate SIRT1. Molecular Cell, 2020, 77, 810-824.e8.	9.7	98
14	Lipid droplet-associated kinase STK25 regulates peroxisomal activity and metabolic stress response in steatotic liver. Journal of Lipid Research, 2020, 61, 178-191.	4.2	23
15	Muscle Lipid Droplets: Cellular Signaling to Exercise Physiology and Beyond. Trends in Endocrinology and Metabolism, 2020, 31, 928-938.	7.1	15
16	Time-Restricted Eating Alters Food Intake Patterns, as Prospectively Documented by a Smartphone Application. Nutrients, 2020, 12, 3396.	4.1	11
17	Simple Targeted Assays for Metabolic Pathways and Signaling: A Powerful Tool for Targeted Proteomics. Analytical Chemistry, 2020, 92, 13672-13676.	6.5	1
18	Regulation of Metabolic Homeostasis in Cell Culture Bioprocesses. Trends in Biotechnology, 2020, 38, 1113-1127.	9.3	24

#	Article	IF	Citations
19	The microenvironment matters: the secret life of intramuscular lipid droplets. Journal of Physiology, 2020, 598, 1117-1118.	2.9	O
20	Hepatic PLIN5 signals via SIRT1 to promote autophagy and prevent inflammation during fasting. Journal of Lipid Research, 2020, 61, 338-350.	4.2	35
21	Microalgal swimming signatures and neutral lipids production across growth phases. Biotechnology and Bioengineering, 2020, 117, 970-980.	3.3	17
22	Timeâ∈Restricted Eating Effects on Body Composition and Metabolic Measures in Humans who are Overweight: A Feasibility Study. Obesity, 2020, 28, 860-869.	3.0	190
23	The lipid droplet as a signaling node. , 2020, , 157-172.		2
24	DXA-Determined Regional Adiposity Relates to Insulin Resistance in a Young Adult Population with Overweight andObesity. Journal of Clinical Densitometry, 2019, 22, 287-292.	1.2	6
25	Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity. Science Advances, 2019, 5, eaax8352.	10.3	66
26	Unconventional Secretion of Adipocyte Fatty Acid Binding Protein 4 Is Mediated By Autophagic Proteins in a Sirtuin-1–Dependent Manner. Diabetes, 2019, 68, 1767-1777.	0.6	32
27	Evidence for a Novel Regulatory Interaction Involving Cyclin D1, Lipid Droplets, Lipolysis, and Cell Cycle Progression in Hepatocytes. Hepatology Communications, 2019, 3, 406-422.	4.3	18
28	Hepatic perilipin 5 promotes lipophagy and alters lipid droplet and mitochondrial dynamics. FASEB Journal, 2019, 33, 490.19.	0.5	1
29	Sizing lipid droplets from adult and geriatric mouse liver tissue via nanoparticle tracking analysis. Analytical and Bioanalytical Chemistry, 2018, 410, 3629-3638.	3.7	4
30	Effect of acute physiological free fatty acid elevation in the context of hyperinsulinemia on fiber type-specific IMCL accumulation. Journal of Applied Physiology, 2017, 123, 71-78.	2.5	24
31	Acyl-CoA Thioesterase 1 (ACOT1) Regulates PPARα to Couple Fatty Acid Flux With Oxidative Capacity During Fasting. Diabetes, 2017, 66, 2112-2123.	0.6	56
32	Breaking fat: The regulation and mechanisms of lipophagy. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1178-1187.	2.4	176
33	ATGL Promotes Autophagy/Lipophagy via SIRT1 to Control Hepatic Lipid Droplet Catabolism. Cell Reports, 2017, 19, 1-9.	6.4	255
34	Caloric Restriction Prevents Carcinogen-Initiated Liver Tumorigenesis in Mice. Cancer Prevention Research, 2017, 10, 660-670.	1.5	14
35	Integrated Regulation of Hepatic Lipid and Glucose Metabolism by Adipose Triacylglycerol Lipase and FoxO Proteins. Cell Reports, 2016, 15, 349-359.	6.4	54
36	Regulation of Glucose Metabolism – A Perspective From Cell Bioprocessing. Trends in Biotechnology, 2016, 34, 638-651.	9.3	103

#	Article	IF	CITATIONS
37	Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption. Molecular Metabolism, 2016, 5, 210-220.	6.5	73
38	Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation. Oncotarget, 2016, 7, 47674-47686.	1.8	23
39	Hepatic lipid droplet biology: Getting to the root of fatty liver. Hepatology, 2015, 62, 964-967.	7.3	111
40	ATGL-Catalyzed Lipolysis Regulates SIRT1 to Control PGC-1α/PPAR-α Signaling. Diabetes, 2015, 64, 418-426.	0.6	153
41	MUFAs. Advances in Nutrition, 2015, 6, 276-277.	6.4	21
42	Quantitative analysis of the murine lipid droplet-associated proteome during diet-induced hepatic steatosis. Journal of Lipid Research, 2015, 56, 2260-2272.	4.2	62
43	ATGLâ€catalyzed lipolysis regulates SIRT1 to control PGCâ€1 a /PPAR―a signaling. FASEB Journal, 2015, 29, 885.24.	0.5	0
44	Serum TAG Analysis Differentiates Between Genetic and Obesity-Associated NAFLD. Diabetes, 2014, 63, 42-44.	0.6	6
45	Training status diverges muscle diacylglycerol accumulation during free fatty acid elevation. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E124-E131.	3.5	24
46	Hepatic ATGL mediates PPAR- \hat{l}_{\pm} signaling and fatty acid channeling through an L-FABP independent mechanism. Journal of Lipid Research, 2014, 55, 808-815.	4.2	39
47	Lipocalin 2 Regulates Brown Fat Activation via a Nonadrenergic Activation Mechanism. Journal of Biological Chemistry, 2014, 289, 22063-22077.	3.4	57
48	Role of ACOT1 in hepatic lipid trafficking (821.6). FASEB Journal, 2014, 28, 821.6.	0.5	0
49	Toll-like receptor 4 signaling is required for induction of gluconeogenic gene expression by palmitate in human hepatic carcinoma cells. Journal of Nutritional Biochemistry, 2013, 24, 1499-1507.	4.2	25
50	Algal swimming velocities signal fatty acid accumulation. Biotechnology and Bioengineering, 2013, 110, 143-152.	3.3	12
51	Hepatic Fatty Acid Trafficking: Multiple Forks in the Road. Advances in Nutrition, 2013, 4, 697-710.	6.4	115
52	New lipidâ€producing, coldâ€ŧolerant yellowâ€green alga isolated from the rocky mountains of colorado. Biotechnology Progress, 2013, 29, 853-861.	2.6	12
53	Hepatic ATGL knockdown uncouples glucose intolerance from liver TAG accumulation. FASEB Journal, 2013, 27, 313-321.	0.5	45
54	Fluid motion mediates biochemical composition and physiological aspects in the green alga <i>Dunaliella primolecta</i> Butcher. Limnology & Oceanography Fluids & Environments, 2013, 3, 74-88.	1.7	6

#	Article	IF	Citations
55	Mechanism of ATGL mediated changes in hepatic energy metabolism: role of LFABP. FASEB Journal, 2013, 27, 822.12.	0.5	0
56	AMP-Activated Protein Kinase $\hat{l}\pm 1$ Protects Against Diet-Induced Insulin Resistance and Obesity. Diabetes, 2012, 61, 3114-3125.	0.6	39
57	Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4α. Cell Cycle, 2012, 11, 2681-2690.	2.6	74
58	Palmitoleate Induces Hepatic Steatosis but Suppresses Liver Inflammatory Response in Mice. PLoS ONE, 2012, 7, e39286.	2.5	125
59	Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses. Journal of Biological Chemistry, 2012, 287, 21492-21500.	3.4	54
60	Mammalian Triacylglycerol Metabolism: Synthesis, Lipolysis, and Signaling. Chemical Reviews, 2011, 111, 6359-6386.	47.7	218
61	Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology, 2011, 53, 116-126.	7.3	283
62	The role of lipid droplets in metabolic disease in rodents and humans. Journal of Clinical Investigation, 2011, 121, 2102-2110.	8.2	526
63	Lipocalin 2 is a selective modulator of peroxisome proliferatorâ€activated receptorâ€Î³ activation and function in lipid homeostasis and energy expenditure. FASEB Journal, 2011, 25, 754-764.	0.5	70
64	Lysophosphatidic Acid Activates Peroxisome Proliferator Activated Receptor- \hat{l}^3 in CHO Cells That Over-Express Glycerol 3-Phosphate Acyltransferase-1. PLoS ONE, 2011, 6, e18932.	2.5	41
65	Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. Journal of Lipid Research, 2010, 51, 3270-3280.	4.2	102
66	Overlapping Roles of the Glucose-Responsive Genes, S14 and S14R, in Hepatic Lipogenesis. Endocrinology, 2010, 151, 2071-2077.	2.8	30
67	Cyclin D1 regulates hepatic lipid metabolism. FASEB Journal, 2010, 24, 503.2.	0.5	0
68	Hepatic Adipose Triglyceride Lipase (ATGL) mediates hepatic triglyceride turnover, fatty acid channeling and PPARâ€alpha activity. FASEB Journal, 2010, 24, 694.12.	0.5	0
69	Hepatic longâ€chain acylâ€CoA synthetase 5 (ACSL5) partitions fatty acids between anabolic and catabolic pathways. FASEB Journal, 2010, 24, 694.2.	0.5	0
70	Suppression of Long Chain Acyl-CoA Synthetase 3 Decreases Hepatic de Novo Fatty Acid Synthesis through Decreased Transcriptional Activity. Journal of Biological Chemistry, 2009, 284, 30474-30483.	3.4	85
71	Hepatic triacylglycerol hydrolysis regulates peroxisome proliferator-activated receptor $\hat{l}\pm$ activity. Journal of Lipid Research, 2009, 50, 1621-1629.	4.2	81
72	Longâ€chain acylâ€CoA synthetase 3 (ACSL3) mediates transcriptional control of hepatic lipogenesis. FASEB Journal, 2009, 23, 522.9.	0.5	0

#	Article	IF	CITATIONS
73	Fatty acids derived from triacylglycerol hydrolysis are a significant source of ligands for peroxisome proliferatorâ€activated receptorâ€Î± (PPARâ€Î±) in rat primary hepatocytes. FASEB Journal, 2008, 22, 807.19.	0.5	0
74	Long-Chain Acyl-Coa Synthetases And Fatty Acid Channeling. Future Lipidology, 2007, 2, 465-476.	0.5	231
75	Cloning and functional characterization of a novel mitochondrial N-ethylmaleimide-sensitive glycerol-3-phosphate acyltransferase (GPAT2). Archives of Biochemistry and Biophysics, 2007, 465, 347-358.	3.0	71
76	Cellular fatty acid uptake: the contribution of metabolism. Current Opinion in Lipidology, 2006, 17, 274-278.	2.7	118
77	Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet. Journal of Lipid Research, 2006, 47, 2004-2010.	4.2	160
78	Rat Long Chain Acyl-CoA Synthetase 5 Increases Fatty Acid Uptake and Partitioning to Cellular Triacylglycerol in McArdle-RH7777 Cells. Journal of Biological Chemistry, 2006, 281, 945-950.	3.4	107
79	Overexpression of Rat Long Chain Acyl-CoA Synthetase 1 Alters Fatty Acid Metabolism in Rat Primary Hepatocytes. Journal of Biological Chemistry, 2006, 281, 37246-37255.	3.4	98
80	Overexpression of rat long chain acylâ€CoA synthetase 1 alters fatty acid metabolism in rat primary hepatocytes. FASEB Journal, 2006, 20, A86.	0.5	0
81	Reducing Dry Period Length to Simplify Feeding Transition Cows: Milk Production, Energy Balance, and Metabolic Profiles. Journal of Dairy Science, 2005, 88, 1004-1014.	3.4	176
82	Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. Journal of Lipid Research, 2004, 45, 1958-1961.	4.2	142