
Robert E Synovec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/972588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets. Geophysical Research Letters, 1996, 23, 277-280.	1.5	429
2	Comprehensive Two-Dimensional High-Speed Gas Chromatography with Chemometric Analysis. Analytical Chemistry, 1998, 70, 2796-2804.	3.2	232
3	Cyclic changes in metabolic state during the life of a yeast cell. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16886-16891.	3.3	232
4	Cardiac-Specific Deletion of Acetyl CoA Carboxylase 2 Prevents Metabolic Remodeling During Pressure-Overload Hypertrophy. Circulation Research, 2012, 111, 728-738.	2.0	214
5	High-speed peak matching algorithm for retention time alignment of gas chromatographic data for chemometric analysis. Journal of Chromatography A, 2003, 996, 141-155.	1.8	182
6	Pattern recognition of jet fuels: comprehensive GC×GC with ANOVA-based feature selection and principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2002, 60, 225-237.	1.8	178
7	Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry Analysis of Metabolites in Fermenting and Respiring Yeast Cells. Analytical Chemistry, 2006, 78, 2700-2709.	3.2	150
8	Classification of gasoline data obtained by gas chromatography using a piecewise alignment algorithm combined with feature selection and principal component analysis. Journal of Chromatography A, 2005, 1096, 101-110.	1.8	148
9	Multidimensional Gas Chromatography: Advances in Instrumentation, Chemometrics, and Applications. Analytical Chemistry, 2018, 90, 505-532.	3.2	147
10	Recent advancements in comprehensive two-dimensional separations with chemometrics. Journal of Chromatography A, 2008, 1184, 341-352.	1.8	146
11	Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels. Analytical Chemistry, 2006, 78, 5639-5644.	3.2	137
12	Fisher Ratio Method Applied to Third-Order Separation Data To Identify Significant Chemical Components of Metabolite Extracts. Analytical Chemistry, 2006, 78, 5068-5075.	3.2	135
13	Standardization of Second-Order Chromatographic/Spectroscopic Data for Optimum Chemical Analysis. Analytical Chemistry, 1998, 70, 218-225.	3.2	132
14	Review of chemometric analysis techniques for comprehensive two dimensional separations data. Journal of Chromatography A, 2012, 1255, 3-11.	1.8	132
15	Comprehensive Two-Dimensional Gas Chromatography and Chemometrics for the High-Speed Quantitative Analysis of Aromatic Isomers in a Jet Fuel Using the Standard Addition Method and an Objective Retention Time Alignment Algorithm. Analytical Chemistry, 2000, 72, 4154-4162.	3.2	127
16	A Comprehensive Two-Dimensional Retention Time Alignment Algorithm To Enhance Chemometric Analysis of Comprehensive Two-Dimensional Separation Data. Analytical Chemistry, 2005, 77, 7735-7743.	3.2	125
17	Objective Data Alignment and Chemometric Analysis of Comprehensive Two-Dimensional Separations with Run-to-Run Peak Shifting on Both Dimensions. Analytical Chemistry, 2001, 73, 5833-5840.	3.2	122
18	Comprehensive analysis of yeast metabolite GC×GC–TOFMS data: combining discovery-mode and deconvolution chemometric software. Analyst: The 2007, 132, 756-767	1.7	103

2

#	Article	IF	CITATIONS
19	A principal component analysis based method to discover chemical differences in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) separations of metabolites in plant samples. Talanta, 2006, 70, 797-804.	2.9	102
20	Trilinear chemometric analysis of two-dimensional comprehensive gas chromatography–time-of-flight mass spectrometry data. Journal of Chromatography A, 2004, 1027, 269-277.	1.8	100
21	High-speed, temperature programmable gas chromatography utilizing a microfabricated chip with an improved carbon nanotube stationary phase. Talanta, 2009, 77, 1420-1425.	2.9	94
22	Parallel Factor Analysis (PARAFAC) of Target Analytes in GC × GCâ^'TOFMS Data: Automated Selection of a Model with an Appropriate Number of Factors. Analytical Chemistry, 2007, 79, 1611-1619.	3.2	90
23	Application of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method to identify potential biomarkers of perinatal asphyxia in a non-human primate model. Journal of Chromatography A, 2011, 1218, 1899-1906.	1.8	86
24	Recent advances in modulator technology for comprehensive two dimensional gas chromatography. TrAC - Trends in Analytical Chemistry, 2019, 113, 379-391.	5.8	82
25	Two-Dimensional Gas Chromatography and Trilinear Partial Least Squares for the Quantitative Analysis of Aromatic and Naphthene Content in Naphtha. Analytical Chemistry, 2001, 73, 5677-5682.	3.2	80
26	Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection: analysis of amino acid and organic acid trimethylsilyl derivatives, with application to the analysis of metabolites in rye grass samples. Talanta, 2005, 65, 380-388.	2.9	80
27	Impurity Profiling of a Chemical Weapon Precursor for Possible Forensic Signatures by Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometry and Chemometrics. Analytical Chemistry, 2010, 82, 689-698.	3.2	78
28	Tile-Based Fisher Ratio Analysis of Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry (GC A— GC–TOFMS) Data Using a Null Distribution Approach. Analytical Chemistry, 2015, 87, 3812-3819.	3.2	76
29	Liquid chromatography–tandem quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry measurement of targeted metabolites of Methylobacterium extorquens AM1 grown on two different carbon sources. Journal of Chromatography A, 2009, 1216, 3280-3289.	1.8	75
30	Monolayer-Protected Gold Nanoparticles as a Stationary Phase for Open Tubular Gas Chromatography. Analytical Chemistry, 2003, 75, 4558-4564.	3.2	71
31	Tile-based Fisher-ratio software for improved feature selection analysis of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry data. Talanta, 2013, 115, 887-895.	2.9	71
32	Increasing the Number of Analyzable Peaks in Comprehensive Two-Dimensional Separations through Chemometrics. Analytical Chemistry, 2001, 73, 675-683.	3.2	69
33	Quantitative assessment of moisture damage for cacao bean quality using two-dimensional gas chromatography combined with time-of-flight mass spectrometry and chemometrics. Journal of Chromatography A, 2010, 1217, 1963-1970.	1.8	68
34	Comprehensive Three-Dimensional Gas Chromatography with Parallel Factor Analysis. Analytical Chemistry, 2007, 79, 8270-8280.	3.2	66
35	Handling within run retention time shifts in two-dimensional chromatography data using shift correction and modeling. Journal of Chromatography A, 2009, 1216, 4020-4029.	1.8	66
36	A Raman Waveguide Detector for Liquid Chromatography. Analytical Chemistry, 1999, 71, 4808-4814.	3.2	65

#	Article	IF	CITATIONS
37	Identification and evaluation of cycling yeast metabolites in two-dimensional comprehensive gas chromatography–time-of-flight-mass spectrometry data. Journal of Chromatography A, 2008, 1186, 401-411.	1.8	64
38	Development and application of a comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method for the analysis of l-β-methylamino-alanine in human tissue. Journal of Chromatography A, 2010, 1217, 4639-4647.	1.8	64
39	Algorithm for locating analytes of interest based on mass spectral similarity in GC × GC–TOF-MS data: analysis of metabolites in human infant urine. Journal of Chromatography A, 2004, 1058, 209-215.	1.8	63
40	Second-order chemometric standardization for high-speed hyphenated gas chromatography: Analysis of GC/MS and comprehensive GC�GC data. Journal of Separation Science, 1999, 11, 97-107.	1.0	61
41	Increasing selectivity in comprehensive three-dimensional gas chromatography via an ionic liquid stationary phase column in one dimension. Journal of Chromatography A, 2010, 1217, 3144-3149.	1.8	60
42	Enhancing the Limit of Detection for Comprehensive Two-Dimensional Gas Chromatography (GC×GC) using Bilinear Chemometric Analysis. Journal of High Resolution Chromatography, 2000, 23, 215-224.	2.0	58
43	Quantification of naphthalenes in jet fuel with GC×GC/Tri-PLS and windowed rank minimization retention time alignment. Journal of Separation Science, 2004, 27, 410-416.	1.3	58
44	Comprehensive two-dimensional gas chromatography of volatile and semi-volatile components using a diaphragm valve-based instrument. Journal of Chromatography A, 2003, 983, 195-204.	1.8	56
45	Monolayer-protected gold nanoparticles as an efficient stationary phase for open tubular gas chromatography using a square capillary. Journal of Chromatography A, 2004, 1029, 185-192.	1.8	54
46	Automated Resolution of Nontarget Analyte Signals in GC × GC-TOFMS Data Using Parallel Factor Analysis. Analytical Chemistry, 2008, 80, 6677-6688.	3.2	53
47	Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry subjected to chemometric peak deconvolution. Journal of Chromatography A, 2004, 1056, 145-54.	1.8	53
48	Observations on "Orthogonality―in Comprehensive Two-Dimensional Separations. Analytical Chemistry, 2007, 79, 7924-7927.	3.2	52
49	Improvement of the limit of detection in chromatography by an integration method. Analytical Chemistry, 1985, 57, 2162-2167.	3.2	51
50	Valve-based comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection: instrumentation and figures-of-merit. Journal of Chromatography A, 2003, 1019, 79-87.	1.8	49
51	Toward automated peak resolution in complete GC × GC–TOFMS chromatograms by PARAFAC. Jour Chemometrics, 2009, 23, 421-431.	nal of	49
52	Enhanced Chemical Analysis Using Parallel Column Gas Chromatography with Single-Detector Time-of-Flight Mass Spectrometry and Chemometric Analysis. Analytical Chemistry, 1999, 71, 1093-1099.	3.2	45
53	Data Analysis Methods. , 2012, , 415-434.		45
54	Time-Dependent Profiling of Metabolites from Snf1 Mutant and Wild Type Yeast Cells. Analytical Chemistry, 2008, 80, 8002-8011.	3.2	42

#	Article	IF	CITATIONS
55	Reversed Phase Liquid Chromatography of Organic Hydrocarbons with Water as the Mobile Phase. Analytical Chemistry, 1996, 68, 2838-2844.	3.2	41
56	Trends in chemometric analysis of comprehensive two-dimensional separations. Analytical and Bioanalytical Chemistry, 2004, 378, 1948-1951.	1.9	41
57	Classification of high-speed gas chromatography–mass spectrometry data by principal component analysis coupled with piecewise alignment and feature selection. Journal of Chromatography A, 2006, 1129, 111-118.	1.8	41
58	Chemical characterization of the acid alteration of diesel fuel: Non-targeted analysis by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry with tile-based Fisher ratio and combinatorial threshold determination. Journal of Chromatography A, 2016, 1440, 179-190.	1.8	41
59	Comprehensive LC�GC for enhanced headspace analysis. Journal of Separation Science, 2000, 12, 160-166.	1.0	39
60	Development of a GC×GC–TOFMS method using SPME to determine volatile compounds in cacao beans. Journal of Separation Science, 2009, 32, 2289-2295.	1.3	39
61	Development of gas chromatographic pattern recognition and classification tools for compliance and forensic analyses of fuels: A review. Analytica Chimica Acta, 2020, 1132, 157-186.	2.6	39
62	GC×GC temperature programming requirements to produce bilinear data for chemometric analysis. Journal of Separation Science, 2002, 25, 297-303.	1.3	38
63	Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis. Journal of Chromatography A, 2014, 1327, 132-140.	1.8	38
64	Characterization and utilization of a novel triflate ionic liquid stationary phase for use in comprehensive twoâ€dimensional gas chromatography. Journal of Separation Science, 2008, 31, 3429-3436.	1.3	36
65	High-Speed Gas Chromatography Using Synchronized Dual-Valve Injection. Analytical Chemistry, 2004, 76, 3517-3524.	3.2	34
66	Performance evaluation of tile-based Fisher Ratio analysis using a benchmark yeast metabolome dataset. Journal of Chromatography A, 2016, 1459, 101-111.	1.8	34
67	Correlation of Quantitative Analysis Precision to Retention Time Precision and Chromatographic Resolution for Rapid, Short-Column Analysis. Analytical Chemistry, 1995, 67, 631-640.	3.2	33
68	High-speed gas chromatography: The importance of instrumentation optimization and the elimination of extra-column band broadening. Talanta, 2008, 76, 703-717.	2.9	33
69	Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening. Journal of Chromatography A, 2011, 1218, 3130-3139.	1.8	33
70	High-speed gas chromatographic separations with diaphragm valve-based injection and chemometric analysis as a gas chromatographic "sensor― Analytica Chimica Acta, 2003, 490, 223-230.	2.6	32
71	Total-transfer, valve-based comprehensive two-dimensional gas chromatography. Analytica Chimica Acta, 2006, 555, 68-74.	2.6	30
72	Unsupervised parameter optimization for automated retention time alignment of severely shifted gas chromatographic data using the piecewise alignment algorithm. Journal of Chromatography A, 2007, 1141, 106-116.	1.8	30

#	Article	IF	CITATIONS
73	Chemometric analysis of gas chromatography–mass spectrometry data using fast retention time alignment via a total ion current shift function. Talanta, 2010, 81, 120-128.	2.9	29
74	Comprehensive Three-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2017, 89, 1793-1800.	3.2	29
75	Diffusion coefficient measurement in a microfluidic analyzer using dual-beam microscale-refractive index gradient detection. Journal of Chromatography A, 2003, 1013, 77-91.	1.8	28
76	Experimental Study of the Quantitative Precision for Valve-Based Comprehensive Two-Dimensional Gas Chromatography. Analytical Chemistry, 2011, 83, 5190-5196.	3.2	28
77	Evaluation of the DotMap algorithm for locating analytes of interest based on mass spectral similarity in data collected using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Journal of Chromatography A, 2005, 1086, 185-192.	1.8	27
78	Toward a global analysis of metabolites in regulatory mutants of yeast. Analytical and Bioanalytical Chemistry, 2011, 401, 2387-2402.	1.9	27
79	Enhancing the chemical selectivity in discovery-based analysis with tandem ionization time-of-flight mass spectrometry detection for comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2018, 1537, 99-108.	1.8	27
80	Enhanced surfactant determination by ion-pair formation using flow-injection analysis and dynamic surface tension detection. Talanta, 1996, 43, 889-899.	2.9	26
81	Development and evaluation of gold-centered monolayer protected nanoparticle stationary phases for gas chromatography. Journal of Chromatography A, 2004, 1060, 225-236.	1.8	26
82	Analysis of bacteria by pyrolysis gas chromatography–differential mobility spectrometry and isolation of chemical components with a dependence on growth temperature. Analyst, The, 2007, 132, 1031.	1.7	25
83	Cas chromatography–mass spectrometry with chemometric analysis for determining 12C and 13C labeled contributions in metabolomics and 13C flux analysis. Journal of Chromatography A, 2012, 1240, 156-164.	1.8	25
84	Using Receiver Operating Characteristic Curves To Optimize Discovery-Based Software with Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2017, 89, 3606-3612.	3.2	25
85	Impact of data bin size on the classification of diesel fuels using comprehensive two-dimensional gas chromatography with principal component analysis. Talanta, 2020, 206, 120239.	2.9	25
86	Development of a positive pressure driven micro-fabricated liquid chromatographic analyzer through rapid-prototyping with poly(dimethylsiloxane) Optimizing chromatographic efficiency with sub-nanoliter injections. Talanta, 2000, 51, 1205-1212.	2.9	24
87	A Microscale-Molecular Weight Sensor:  Probing Molecular Diffusion between Adjacent Laminar Flows by Refractive Index Gradient Detection. Analytical Chemistry, 2002, 74, 4558-4565.	3.2	24
88	Fast, high peak capacity separations in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Journal of Chromatography A, 2012, 1266, 116-123.	1.8	24
89	Dynamic Surface Tension Detection by Optically Probing a Repeating Drop Rate. Analytical Chemistry, 1994, 66, 1209-1216.	3.2	23
90	Trilinearity deviation ratio: A new metric for chemometric analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry data. Analytica Chimica Acta, 2015, 871, 66-76.	2.6	23

#	Article	IF	CITATIONS
91	Untargeted profiling and differentiation of geographical variants of wine samples using headspace solid-phase microextraction flow-modulated comprehensive two-dimensional gas chromatography with the support of tile-based Fisher ratio analysis. Journal of Chromatography A, 2022, 1662, 462735.	1.8	23
92	Fast, High Peak Capacity Separations in Gas Chromatography–Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2012, 84, 4167-4173.	3.2	22
93	Comprehensive two-dimensional gas chromatography using partial modulation via a pulsed flow valve with a short modulation period. Talanta, 2018, 177, 142-149.	2.9	22
94	Development of Ultrafast Separations Using Negative Pulse Partial Modulation To Enable New Directions in Gas Chromatography. Analytical Chemistry, 2019, 91, 7328-7335.	3.2	22
95	Dynamic Surface Tension and Adhesion Detection for the Rapid Analysis of Surfactants in Flowing Aqueous Liquids. Analytical Chemistry, 1997, 69, 3496-3505.	3.2	21
96	Toward a Fully Integrated Positive-Pressure Driven Microfabricated Liquid Analyzer. Analytical Chemistry, 2002, 74, 177-184.	3.2	21
97	Predictive Modeling of Aerospace Fuel Properties Using Comprehensive Two-Dimensional Gas Chromatography with Time-Of-Flight Mass Spectrometry and Partial Least Squares Analysis. Energy & Fuels, 2020, 34, 4084-4094.	2.5	21
98	Hydrophobic interaction chromatography coupled with dynamic surface tension detection for the determination of surface active species in protein formulations. Journal of Chromatography A, 1998, 806, 239-250.	1.8	20
99	Investigation of high-speed gas chromatography using synchronized dual-valve injection and resistively heated temperature programming. Journal of Chromatography A, 2007, 1148, 236-243.	1.8	20
100	The perinatal transition of the circulating metabolome in a nonhuman primate. Pediatric Research, 2012, 71, 338-344.	1.1	20
101	Targeted analyte deconvolution and identification by four-way parallel factor analysis using three-dimensional gas chromatography with mass spectrometry data. Analytica Chimica Acta, 2017, 983, 67-75.	2.6	20
102	Control-Normalized Fisher Ratio Analysis of Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry Data for Enhanced Biomarker Discovery in a Metabolomic Study of Orthopedic Knee-Ligament Injury. Analytical Chemistry, 2020, 92, 15526-15533.	3.2	20
103	Statistical inference of mass channel purity from Fisher ratio analysis using comprehensive two-dimensional gas chromatography with time of flight mass spectrometry data. Journal of Chromatography A, 2020, 1627, 461401.	1.8	20
104	Investigation of the limit of discovery using tile-based Fisher ratio analysis with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Journal of Chromatography A, 2021, 1644, 462092.	1.8	20
105	Comparison of an integration procedure to Fourier transform and data averaging procedures in chromatographic data analysis. Analytical Chemistry, 1986, 58, 2093-2095.	3.2	19
106	Molecular weight sensing of polyethylene glycols by flow injection analysis and refractive index gradient detection. Analytica Chimica Acta, 1991, 246, 241-249.	2.6	19
107	Novel calibration of a dynamic surface tension detector: flow injection analysis of kinetically-hindered surface active analytes. Talanta, 1999, 50, 1045-1056.	2.9	19
108	Ultrafast separations via pulse flow valve modulation to enable high peak capacity multidimensional gas chromatography. Journal of Chromatography A, 2018, 1573, 115-124.	1.8	19

#	Article	IF	CITATIONS
109	Development of an Enhanced Total Ion Current Chromatogram Algorithm to Improve Untargeted Peak Detection. Analytical Chemistry, 2020, 92, 11365-11373.	3.2	19
110	Algorithm for locating analytes of interest based on mass spectral similarity in GC × GC–TOF-MS data: analysis of metabolites in human infant urine. Journal of Chromatography A, 2004, 1058, 209-215.	1.8	19
111	Sample preparation methodology for mouse heart metabolomics using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Talanta, 2013, 108, 123-130.	2.9	18
112	High temperature diaphragm valve-based comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2015, 1424, 127-133.	1.8	18
113	Modeling RP-1 fuel advanced distillation data using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry and partial least squares analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 321-330.	1.9	18
114	Column selection approach to achieve a high peak capacity in comprehensive three-dimensional gas chromatography. Talanta, 2019, 195, 822-829.	2.9	18
115	Development and evaluation of gold-centered monolayer protected nanoparticle stationary phases for gas chromatography. Journal of Chromatography A, 2004, 1060, 225-236.	1.8	18
116	Constituents with independence from growth temperature for bacteria using pyrolysis-gas chromatography/differential mobility spectrometry with analysis of variance and principal component analysis. Analyst, The, 2008, 133, 760.	1.7	17
117	Implications of phase ratio for maximizing peak capacity in comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Journal of Chromatography A, 2018, 1536, 16-26.	1.8	17
118	Dynamic pressure gradient modulation for comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection. Journal of Chromatography A, 2020, 1620, 460982.	1.8	17
119	Radial measurement of hydrodynamically generated concentration profiles for molecular weight determination. Analytical Chemistry, 1992, 64, 2130-2137.	3.2	16
120	Laser-based dynamic surface tension detection for liquid chromatography by probing a repeating drop radius. Journal of Chromatography A, 1995, 691, 195-204.	1.8	16
121	Parallel column liquid chromatography with a single multi-wavelength absorbance detector for enhanced selectivity using chemometric analysis. Analytica Chimica Acta, 2003, 490, 197-210.	2.6	16
122	Flow injection analysis with diode array absorbance detection and dynamic surface tension detection for studying denaturation and surface activity of globular proteins. Analytical Biochemistry, 2006, 351, 100-113.	1.1	16
123	Characterization of BSA unfolding and aggregation using a single-capillary viscometer and dynamic surface tension detector. Talanta, 2011, 85, 2553-2561.	2.9	16
124	High throughput analysis of atmospheric volatile organic compounds by thermal injection – isothermal gas chromatography – time-of-flight mass spectrometry. Talanta, 2013, 103, 95-102.	2.9	16
125	High temperature diaphragm valve-based comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Talanta, 2016, 161, 675-680.	2.9	16
126	Dynamic pressure gradient modulation for comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2020, 1609, 460488.	1.8	16

#	Article	IF	CITATIONS
127	Improved detection in superspeed size-exclusion chromatography by reducing on-column dilution and detector noise. Analytical Chemistry, 1988, 60, 1829-1832.	3.2	15
128	Ratio of sequential chromatograms for quantitative analysis and peak deconvolution: application to standard addition method and process monitoring. Analytical Chemistry, 1990, 62, 1597-1603.	3.2	15
129	Rapid polymeric surfactant characterization using a novel flow-injection system with dynamic surface tension detection. Analytica Chimica Acta, 2000, 412, 149-160.	2.6	15
130	Study of the interdependency of the data sampling ratio with retention time alignment and principal component analysis for gas chromatography. Journal of Chromatography A, 2011, 1218, 9091-9101.	1.8	15
131	Comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry detection with a 50 ms modulation period. Journal of Chromatography A, 2019, 1583, 117-123.	1.8	15
132	Advanced data handling in comprehensive two-dimensional gas chromatography. Separation Science and Technology, 2020, 12, 229-268.	0.0	15
133	Algorithm for locating analytes of interest based on mass spectral similarity in GC x GC-TOF-MS data: analysis of metabolites in human infant urine. Journal of Chromatography A, 2004, 1058, 209-15.	1.8	15
134	High-speed cryo-focusing injection for gas chromatography: Reduction of injection band broadening with concentration enrichment. Talanta, 2012, 97, 9-15.	2.9	14
135	Enhancing Gas Chromatography–Time of Flight Mass Spectrometry Data Analysis Using Two-Dimensional Mass Channel Cluster Plots. Analytical Chemistry, 2014, 86, 3973-3979.	3.2	14
136	Class comparison enabled mass spectrum purification for comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Talanta, 2022, 236, 122844.	2.9	14
137	Dynamic surface tension analysis of dodecyl sulfate association complexes. Talanta, 2001, 55, 551-560.	2.9	13
138	Sequential injection analysis with dynamic surface tension detection High throughput analysis of the interfacial properties of surface-active samples. Talanta, 2003, 59, 1153-1163.	2.9	13
139	High-Throughput Screening of Protein Surface Activity via Flow Injection Analysis-pH Gradient-Dynamic Surface Tension Detection. Analytical Chemistry, 2005, 77, 250-258.	3.2	13
140	Utilizing the Third Order Advantage with Isotope Dilution Mass Spectrometry. Analytical Chemistry, 2010, 82, 41-43.	3.2	13
141	Preliminary effects of real-world factors on the recovery and exploitation of forensic impurity profiles of a nerve-agent simulant from office media. Journal of Chromatography A, 2012, 1270, 269-282.	1.8	13
142	Partial least squares analysis of rocket propulsion fuel data using diaphragm valve-based comprehensive two-dimensional gas chromatography coupled with flame ionization detection. Talanta, 2016, 153, 203-210.	2.9	13
143	Minimum variance optimized Fisher ratio analysis of comprehensive two-dimensional gas chromatography / mass spectrometry data: Study of the pacu fish metabolome. Journal of Chromatography A, 2022, 1667, 462868.	1.8	13
144	Tile-Based Pairwise Analysis of GC × GC-TOFMS Data to Facilitate Analyte Discovery and Mass Spectrum Purification. Analytical Chemistry, 2022, 94, 5658-5666.	3.2	13

#	Article	IF	CITATIONS
145	Multidimensional analysis of denatured milk proteins by hydrophobic interaction chromatography coupled to a dynamic surface tension detector. Journal of Chromatography A, 2004, 1023, 79-91.	1.8	12
146	Pixel-Level Data Analysis Methods for Comprehensive Two-Dimensional Chromatography. Data Handling in Science and Technology, 2015, 29, 427-463.	3.1	12
147	Method to determine the true modulation ratio for comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2016, 1476, 114-123.	1.8	12
148	Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution. Journal of Chromatography A, 2004, 1056, 145-154.	1.8	11
149	Determining the Probability of Achieving a Successful Quantitative Analysis for Gas Chromatography–Mass Spectrometry. Analytical Chemistry, 2017, 89, 9926-9933.	3.2	11
150	Total-transfer comprehensive three-dimensional gas chromatography with time-of-flight mass spectrometry. Journal of Chromatography A, 2020, 1634, 461654.	1.8	11
151	Discovery-based analysis and quantification for comprehensive three-dimensional gas chromatography flame ionization detection data. Journal of Chromatography A, 2020, 1623, 461190.	1.8	11
152	A systematic investigation of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry with dynamic pressure gradient modulation for high peak capacity separations. Analytica Chimica Acta, 2020, 1134, 115-124.	2.6	11
153	Multidimensional Analysis of Poly(ethylene glycols) by Size Exclusion Chromatography and Dynamic Surface Tension Detection. Analytical Chemistry, 2000, 72, 4372-4380.	3.2	10
154	Separation and determination of denatured caseins by hydrophobic interaction chromatography. Part II. Method validation and applications. Analyst, The, 2001, 126, 995-1000.	1.7	10
155	Development of a solid phase extraction protocol coupled with liquid chromatography mass spectrometry to analyze central carbon metabolites in lake sediment microcosms. Journal of Separation Science, 2011, 34, 3597-3605.	1.3	10
156	Impact of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry experimental design on data trilinearity and parallel factor analysis deconvolution. Journal of Chromatography A, 2019, 1605, 460368.	1.8	10
157	Profiling Olefins in Gasoline by Bromination Using GC×GC-TOFMS Followed by Discovery-Based Comparative Analysis. Analytical Chemistry, 2022, 94, 9407-9414.	3.2	10
158	Simulating comprehensive two-dimensional gas chromatography mass spectrometry data with realistic run-to-run shifting to evaluate the robustness of tile-based Fisher ratio analysis. Journal of Chromatography A, 2022, 1677, 463321.	1.8	10
159	Methods of Discovery-Based and Targeted Metabolite Analysis by Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry Detection. Methods in Molecular Biology, 2014, 1198, 83-97.	0.4	9
160	Effect of solution viscosity on dynamic surface tension detection. Analytica Chimica Acta, 2005, 534, 79-87.	2.6	8
161	Analysis of commercial beverage products by size exclusion chromatography coupled with UV–vis absorbance detection and dynamic surface tension detection. Talanta, 2010, 80, 1445-1451.	2.9	8
162	Non-targeted determination of 13C-labeling in the Methylobacterium extorquens AM1 metabolome using the two-dimensional mass cluster method and principal component analysis. Journal of Chromatography A, 2016, 1432, 111-121.	1.8	8

#	Article	IF	CITATIONS
163	Comprehensive discovery of 13C labeled metabolites in the bacterium Methylobacterium extorquens AM1 using gas chromatography–mass spectrometry. Journal of Chromatography A, 2013, 1317, 175-185.	1.8	7
164	Analytical Determination of the Severity of Potato Taste Defect in Roasted East African Arabica Coffee. Journal of Agricultural and Food Chemistry, 2021, 69, 2253-2261.	2.4	7
165	Development of variance rank initiated-unsupervised sample indexing for gas chromatography-mass spectrometry analysis. Talanta, 2021, 233, 122495.	2.9	7
166	Computational method for untargeted determination of cycling yeast metabolites using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Talanta, 2022, 244, 123396.	2.9	7
167	Whole-Column Radioactivity Detection:Â Simultaneous Separation and Enhanced Detectability. Analytical Chemistry, 1999, 71, 2700-2707.	3.2	6
168	Real-time target selection optimization to enhance alignment of gas chromatograms. Talanta, 2011, 83, 738-743.	2.9	6
169	Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography. Journal of Chromatography A, 2015, 1392, 82-90.	1.8	6
170	Non-targeted discovery of class-distinguishing metabolites in Argentinian pacu fish by comprehensive two-dimensional gas chromatography with principal component analysis. Microchemical Journal, 2021, 164, 106004.	2.3	6
171	Determination of the Signal-To-Noise Ratio Enhancement in Comprehensive Three-Dimensional Gas Chromatography. Analytical Chemistry, 2021, 93, 8526-8535.	3.2	6
172	Principal component analysis of comprehensive three-dimensional gas chromatography time-of-flight mass spectrometry data. Journal of Chromatography Open, 2022, 2, 100043.	0.8	6
173	Tile-based variance rank initiated-unsupervised sample indexing for comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Analytica Chimica Acta, 2022, 1209, 339847.	2.6	6
174	Determination, by dynamic surface-tension analysis, of the molar mass of proteins denatured in guanidine thiocyanate. Analytical and Bioanalytical Chemistry, 2004, 378, 134-143.	1.9	5
175	Chemometric decomposition of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry data employing partial modulation in the negative pulse mode. Talanta, 2020, 210, 120670.	2.9	5
176	Targeted mass spectral ratio analysis: A new tool for gas chromatography—mass spectrometry. Talanta, 2013, 103, 267-275.	2.9	4
177	Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis. , 2016, , .		4
178	Baseline correction method for dynamic pressure gradient modulated comprehensive two-dimensional gas chromatography with flame ionization detection. Journal of Chromatography A, 2021, 1652, 462358.	1.8	4
179	Extension of the two-dimensional mass channel cluster plot method to fast separations utilizing low thermal mass gas chromatography with time-of-flight mass spectrometry. Analytica Chimica Acta, 2016, 913, 160-170.	2.6	3
180	A dynamic liquid–liquid interfacial pressure detector for the rapid analysis of surfactants in a flowing organic liquid. Talanta, 2005, 65, 722-729.	2.9	2

#	Article	IF	CITATIONS
181	Size exclusion chromatography with dual-beam refractive index gradient detection of polystyrene samples. Talanta, 2007, 73, 287-295.	2.9	2
182	Utilizing a constant peak width transform for isothermal gas chromatography. Journal of Chromatography A, 2011, 1218, 3718-3724.	1.8	2
183	Data analysis methods for gas chromatography. , 2021, , 525-546.		2
184	Size-Exclusion Chromatography with Dynamic Surface Tension Detection: Analysis of Polymers and Proteins. ACS Symposium Series, 2004, , 266-280.	0.5	1
185	Chapter 5 Chemometric Approaches. Comprehensive Analytical Chemistry, 2009, 55, 107-122.	0.7	1
186	Management and interpretation of capillary chromatography-mass spectrometry data. , 2020, , 449-480.		1
187	Second-order chemometric standardization for high-speed hyphenated gas chromatography: Analysis of GC/MS and comprehensive GC×GC data. , 1999, 11, 97.		1
188	Novel approaches in detector instrumentation for process liquid chromatography. AIP Conference Proceedings, 1989, , .	0.3	0
189	Trace Analysis of Organic Compounds in Groundwater. ACS Symposium Series, 1992, , 243-257.	0.5	0
190	Chemical analysis in a drop: a dynamic surface tension detector for polymer and protein characterization. Polymer International, 2013, 62, 1135-1143.	1.6	0
191	Examination of the two-dimensional mass channel cluster plot method for gas chromatography – mass spectrometry in the context of the statistical model of overlap. Journal of Chromatography A, 2019, 1601, 319-326.	1.8	0
192	Monolayer-Protected Metal Nanoparticles: Chemical Sensing and Gas Chromatography. , 2014, , 2770-2778.		0