List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/972504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low Light Amplification Threshold and Reduced Efficiency Rollâ€Off in Thick Emissive Layer OLEDs from a Diketopyrrolopyrrole Derivative. Macromolecular Rapid Communications, 2022, 43, e2200115.	3.9	4
2	Controlling triplet–triplet upconversion and singlet-triplet annihilation in organic light-emitting diodes for injection lasing. Communications Materials, 2022, 3, .	6.9	13
3	Reduced Singlet–Triplet Annihilation for Low Threshold Amplified Spontaneous Emission from a Blue Polyfluorene Electroluminescent Organic Semiconductor. Journal of Physical Chemistry C, 2022, 126, 9069-9075.	3.1	5
4	Sensitised lanthanide luminescence using a Rull polypyridyl functionalised dipicolinic acid chelate. Dalton Transactions, 2021, 50, 7400-7408.	3.3	1
5	Dinuclear triple stranded phenyl-spaced 1,3-bis-β-diketonato lanthanide(<scp>iii</scp>) complexes: synthesis, structures and spectroscopy. Dalton Transactions, 2021, 50, 4874-4879.	3.3	7
6	Light Amplification and Efficient Electroluminescence from a Solutionâ€Processable Diketopyrrolopyrrole Derivative via Tripletâ€toâ€Singlet Upconversion. Advanced Functional Materials, 2021, 31, 2009817.	14.9	30
7	Deepâ€Red Lasing and Amplified Spontaneous Emission from Nature Inspired Bayâ€Annulated Indigo Derivatives. Advanced Optical Materials, 2020, 8, 1901350.	7.3	26
8	Design Strategy for Robust Organic Semiconductor Laser Dyes. , 2020, 2, 161-167.		47
9	Solid cyclooctatetraene-based triplet quencher demonstrating excellent suppression of singlet–triplet annihilation in optical and electrical excitation. Nature Communications, 2020, 11, 5623.	12.8	31
10	Enhanced Near-Infrared Emission from Eight-Coordinate vs Nine-Coordinate YbIII Complexes Using 2-(5-Methylpyridin-2-yl)-8-hydroxyquinoline. Inorganic Chemistry, 2020, 59, 16194-16204.	4.0	3
11	Low Amplified Spontaneous Emission and Lasing Thresholds from Hybrids of Fluorenes and Vinylphenylcarbazole. Advanced Optical Materials, 2020, 8, 2000784.	7.3	14
12	Lasing Operation under Longâ€Pulse Excitation in Solutionâ€Processed Organic Gain Medium: Toward CW Lasing in Organic Semiconductors. Advanced Optical Materials, 2020, 8, 2001234.	7.3	23
13	Organic Semiconductor Lasers: Lasing Operation under Longâ€Pulse Excitation in Solutionâ€Processed Organic Gain Medium: Toward CW Lasing in Organic Semiconductors (Advanced Optical Materials) Tj ETQq1 1	0.78.4314	rg&T /Overloo
14	A Photophysical Study of Sensitizationâ€Initiated Electron Transfer: Insights into the Mechanism of Photoredox Activity. Angewandte Chemie, 2020, 132, 9609-9613.	2.0	3
15	A Photophysical Study of Sensitizationâ€Initiated Electron Transfer: Insights into the Mechanism of Photoredox Activity. Angewandte Chemie - International Edition, 2020, 59, 9522-9526.	13.8	37
16	Organic Laser Dyes: Deepâ€Red Lasing and Amplified Spontaneous Emission from Nature Inspired Bayâ€Annulated Indigo Derivatives (Advanced Optical Materials 2/2020). Advanced Optical Materials, 2020, 8, 2070006.	7.3	0
17	Surface Ligands Stabilized Lead Halide Perovskite Quantum Dot Photocatalyst for Visible Lightâ€Driven Hydrogen Generation. Advanced Functional Materials, 2019, 29, 1905683.	14.9	85
18	Quantification of energy transfer in bimetallic Pt(<scp>ii</scp>)–Ln(<scp>iii</scp>) complexes featuring an N^C^N-cyclometallating ligand. Dalton Transactions, 2019, 48, 2142-2149.	3.3	3

#	Article	IF	CITATIONS
19	Sensitized Photochemical CO ₂ Reduction by Heteroâ€Pacman Compounds Linking a Re ^I Tricarbonyl with a Porphyrin Unit. Chemistry - A European Journal, 2019, 25, 4509-4519.	3.3	29
20	Energy Transfer from Antenna Ligand to Europium(III) Followed Using Ultrafast Optical and X-ray Spectroscopy. Journal of the American Chemical Society, 2019, 141, 11071-11081.	13.7	63
21	Anion tuning of Zn ²⁺ architectures using a Tris-base salicylic ligand. CrystEngComm, 2019, 21, 4267-4274.	2.6	0
22	Quantitative Sensitization Efficiencies in NIR-Emissive Homoleptic Ln(III) Complexes Using 2-(5-Methylpyridin-2-yl)-8-hydroxyquinoline. Inorganic Chemistry, 2018, 57, 14062-14072.	4.0	16
23	Probing the effect of \hat{l}^2 -triketonates in visible and NIR emitting lanthanoid complexes. Dalton Transactions, 2018, 47, 7956-7964.	3.3	12
24	Luminescent Tetrahedral Molecular Cages Containing Ruthenium(II) Chromophores. Inorganic Chemistry, 2018, 57, 8476-8486.	4.0	20
25	Excited Triplet State Interactions of Fluoroquinolone Norfloxacin with Natural Organic Matter: A Laser Spectroscopy Study. Environmental Science & Technology, 2018, 52, 10426-10432.	10.0	31
26	Hydroxyl Radicals via Collision-Induced Dissociation of Trimethylammonium Benzyl Alcohols. Australian Journal of Chemistry, 2017, 70, 397.	0.9	5
27	Covalently Bonded Perylene–DiiodoBodipy Dyads for Thiol-Activatable Triplet–Triplet Annihilation Upconversion. Journal of Physical Chemistry C, 2017, 121, 22665-22679.	3.1	17
28	Synthesis and characterisation of new tripodal lanthanide complexes and investigation of their optical and magnetic properties. Dalton Transactions, 2017, 46, 12177-12184.	3.3	7
29	Versatility of Terpyridineâ€Functionalised Aryl Tetrazoles: Photophysical Properties, Ratiometric Sensing of Zinc Cations and Sensitisation of Lanthanide Luminescence. European Journal of Inorganic Chemistry, 2017, 2017, 5260-5270.	2.0	11
30	Visible and Near-Infrared Emission from Lanthanoid Î ² -Triketonate Assemblies Incorporating Cesium Cations. Inorganic Chemistry, 2017, 56, 8975-8985.	4.0	23
31	Structure and efficient luminescence upconversion of Ln(<scp>iii</scp>) aromatic N-oxide coordination polymers. Dalton Transactions, 2016, 45, 12200-12205.	3.3	7
32	Chiral Ruthenium(II) Complexes as Supramolecular Building Blocks for Heterometallic Self-Assembly. Inorganic Chemistry, 2016, 55, 12737-12751.	4.0	18
33	Characterisation of Australian Verdelho wines from the Queensland Granite Belt region. Food Chemistry, 2016, 196, 1163-1171.	8.2	12
34	Sensitised Ln ^{III} Emission and Excited‣tate Dynamics of Cofacial â€~Pacman' Porphyrin Terpyridine Complexes. Chemistry - A European Journal, 2016, 22, 16178-16186.	3.3	9
35	Photo-induced electron transfer in a diamino-substituted Ru(bpy)3[PF6]2 complex and its application as a triplet photosensitizer for nitric oxide (NO)-activated triplet–triplet annihilation upconversion. Photochemical and Photobiological Sciences, 2016, 15, 995-1005.	2.9	18
36	Investigation of the Photophysical Properties of a Eu3+ Coordination Polymer Bearing an α-Nitrile Substituted β-Diketonate Ligand via Emission and Ultrafast Transient Absorption Spectroscopy. Australian Journal of Chemistry, 2015, 68, 1392.	0.9	5

#	Article	IF	CITATIONS
37	Lanthanoid/Alkali Metal βâ€Triketonate Assemblies: A Robust Platform for Efficient NIR Emitters. Chemistry - A European Journal, 2015, 21, 18354-18363.	3.3	24
38	Singlet Fission and Triplet Exciton Dynamics in Rubrene/Fullerene Heterojunctions: Implications for Electroluminescence. Advanced Electronic Materials, 2015, 1, 1500229.	5.1	22
39	Self-assembled supramolecular cages containing ruthenium(<scp>ii</scp>) polypyridyl complexes. Chemical Communications, 2015, 51, 4465-4468.	4.1	64
40	Optimization of the Sensitization Process and Stability of Octadentate Eu(III) 1,2-HOPO Complexes. Inorganic Chemistry, 2015, 54, 6807-6820.	4.0	15
41	Structural features and near infra-red (NIR) luminescence of isomeric Yb(<scp>iii</scp>) bipyridyl-N,N′-dioxide coordination polymers. Dalton Transactions, 2015, 44, 13378-13383.	3.3	9
42	Analysis of the emitting states of an Ir(III) complex with strong blue emission. Chemical Physics Letters, 2015, 641, 62-67.	2.6	6
43	Broad-Band NIR Transient Absorption Spectroscopy of an "All-Carbon―Bridged Bimetallic Radical Cation Complex. Organometallics, 2015, 34, 3923-3926.	2.3	23
44	Synthesis, Stability and Sensitised Lanthanide Luminescence of Heterobimetallic d/f Terpyridine Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 414-420.	2.0	14
45	A comparison of sensitized Ln(<scp>iii</scp>) emission using pyridine- and pyrazine-2,6-dicarboxylates – part II. Dalton Transactions, 2013, 42, 2075-2083.	3.3	20
46	Heterodinuclear ruthenium(ii)–cobalt(iii) complexes as models for a new approach to selective cancer treatment. Dalton Transactions, 2012, 41, 14425.	3.3	18
47	A comparison of sensitized Ln(iii) emission using pyridine- and pyrazine-2,6-dicarboxylates. Dalton Transactions, 2012, 41, 5272.	3.3	11
48	Sensitization of Lanthanoid Luminescence by Organic and Inorganic Ligands in Lanthanoid-Organic-Polyoxometalates. Inorganic Chemistry, 2012, 51, 1142-1151.	4.0	128
49	Photoinduced ligand release in a ruthenium(ii)-cobalt(iii) heterodinuclear system. Chemical Communications, 2011, 47, 7692.	4.1	15
50	Impact of Glutathione on the Formation of Methylmethine- and Carboxymethine-Bridged (+)-Catechin Dimers in a Model Wine System. Journal of Agricultural and Food Chemistry, 2011, 59, 7410-7418.	5.2	49
51	Octadentate Cages of Tb(III) 2-Hydroxyisophthalamides: A New Standard for Luminescent Lanthanide Labels. Journal of the American Chemical Society, 2011, 133, 19900-19910.	13.7	198
52	1-Methyl-3-hydroxy-pyridin-2-one Complexes of Near Infra-Red Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution. Inorganic Chemistry, 2010, 49, 4156-4166.	4.0	37
53	Terbium Polyoxometalate Organic Complexes: Correlation of Structure with Luminescence Properties. Angewandte Chemie - International Edition, 2010, 49, 7702-7705.	13.8	172
54	Eu(III) Complexes of Functionalized Octadentate 1-Hydroxypyridin-2-ones: Stability, Bioconjugation, and Luminescence Resonance Energy Transfer Studies. Inorganic Chemistry, 2010, 49, 9928-9939.	4.0	22

#	Article	IF	CITATIONS
55	EullI Complexes of Octadentate 1-Hydroxy-2-pyridinones: Stability and Improved Photophysical Performance. Australian Journal of Chemistry, 2009, 62, 1300.	0.9	6
56	Aryl Bridged 1-Hydroxypyridin-2-one: Effect of the Bridge on the Eu(III) Sensitization Process. Inorganic Chemistry, 2009, 48, 9316-9324.	4.0	20
57	1,2-Hydroxypyridonate/Terephthalamide Complexes of Gadolinium(III): Synthesis, Stability, Relaxivity, and Water Exchange Properties. Inorganic Chemistry, 2009, 48, 277-286.	4.0	40
58	From Antenna to Assay: Lessons Learned in Lanthanide Luminescence. Accounts of Chemical Research, 2009, 42, 542-552.	15.6	945
59	Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands. Inorganic Chemistry, 2009, 48, 8469-8479.	4.0	43
60	3â€Hydroxypyridinâ€2â€one Complexes of Nearâ€Infrared (NIR) Emitting Lanthanides: Sensitization of Holmium(III) and Praseodymium(III) in Aqueous Solution. Angewandte Chemie - International Edition, 2008, 47, 9500-9503.	13.8	75
61	Highly Luminescent Lanthanide Complexes of 1-Hydroxy-2-pyridinones. Inorganic Chemistry, 2008, 47, 3105-3118.	4.0	69
62	Use of YbIII-Centered Near-Infrared (NIR) Luminescence To Determine the Hydration State of a 3,2-HOPO-Based MRI Contrast Agent. Inorganic Chemistry, 2008, 47, 8571-8573.	4.0	20
63	Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence. Inorganic Chemistry, 2008, 47, 7535-7544.	4.0	62
64	Aqueous Ln(III) Luminescence Agents Derived from a Tasty Precursor. Inorganic Chemistry, 2008, 47, 7951-7953.	4.0	14
65	Aryl-Bridged 1-Hydroxypyridin-2-one: Sensitizer Ligands for Eu(III). Inorganic Chemistry, 2008, 47, 6109-6111.	4.0	41
66	Highly Fluorescent Group 13 Metal Complexes With Cyclic, Aromatic Hydroxamic Acid Ligands. Inorganic Chemistry, 2008, 47, 8665-8673.	4.0	8
67	Brilliant Sm, Eu, Tb, and Dy Chiral Lanthanide Complexes with Strong Circularly Polarized Luminescence. Journal of the American Chemical Society, 2007, 129, 77-83.	13.7	278
68	1,2-Hydroxypyridonates as Contrast Agents for Magnetic Resonance Imaging:  TREN-1,2-HOPO. Inorganic Chemistry, 2007, 46, 9182-9191.	4.0	58
69	Highly Soluble Tris-hydroxypyridonate Gd(III) Complexes with Increased Hydration Number, Fast Water Exchange, Slow Electronic Relaxation, and High Relaxivity1. Journal of the American Chemical Society, 2007, 129, 1870-1871.	13.7	97
70	An Octadentate Luminescent Eu(III) 1,2-HOPO Chelate with Potent Aqueous Stability. Inorganic Chemistry, 2007, 46, 5468-5470.	4.0	37
71	Optimized Relaxivity and Stability of [Gd(H(2,2)-1,2-HOPO)(H2O)]-for Use as an MRI Contrast Agent1. Inorganic Chemistry, 2007, 46, 4796-4798.	4.0	39
72	Enantiopure, Octadentate Ligands as Sensitizers for Europium and Terbium Circularly Polarized Luminescence in Aqueous Solution, Journal of the American Chemical Society, 2007, 129, 15468-15470	13.7	115

#	Article	IF	CITATIONS
73	Towards structure–property–function relationships for eumelanin. Soft Matter, 2006, 2, 37-44.	2.7	263
74	Microbial Evasion of the Immune System:Â Structural Modifications of Enterobactin Impair Siderocalin Recognition1. Journal of the American Chemical Society, 2006, 128, 10998-10999.	13.7	63
75	"Cymothoe sangaris  An Extremely Stable and Highly Luminescent 1,2-Hydroxypyridinonate Chelate of Eu(III). Journal of the American Chemical Society, 2006, 128, 10648-10649.	13.7	77
76	Electronic Energy-Transfer Rate Constants for Geometrical Isomers of a Bichromophoric Macrocyclic Complex. Inorganic Chemistry, 2006, 45, 51-58.	4.0	9
77	2-Methoxy-6-methyl-3-nitro-4-(2-nitroprop-1-enyl)phenyl acetate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o1709-o1711.	0.2	0
78	Tuning the Photophysical Behavior of Luminescent Cyclam Derivatives by Cation Binding and Excited State Redox Potential. Journal of Physical Chemistry A, 2005, 109, 3788-3796.	2.5	14
79	Intra- vs Intermolecular Photoinduced Electron Transfer Reactions of a Macrocyclic Donorâ^'Acceptor Dyad. Journal of Physical Chemistry A, 2005, 109, 11715-11723.	2.5	9
80	Functionalized Macrocyclic Compounds: Potential Sensors of Small Molecules and Ions ChemInform, 2003, 34, no.	0.0	0
81	Rates of Electronic Energy Transfer in Conformationally Flexible Bichromophoric Macrocyclic Complexes:Â A Combined Experimental and Molecular Modeling Study. Journal of Physical Chemistry A, 2003, 107, 8396-8403.	2.5	8
82	Functionalized Macrocyclic Compounds: Potential Sensors of Small Molecules and Ions. Australian Journal of Chemistry, 2003, 56, 239.	0.9	45
83	Intramolecular Electronic Energy Transfer in Bichromophoric Macrocyclic Complexes. Inorganic Chemistry, 2002, 41, 3025-3031.	4.0	21
84	Photoinduced Electron Transfer and Electronic Energy Transfer in Naphthyl-Appended Cyclams. Inorganic Chemistry, 2001, 40, 5799-5805.	4.0	35