Hugo Celio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9713229/publications.pdf Version: 2024-02-01

HUCO CEUO

#	Article	IF	CITATIONS
1	Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nature Communications, 2017, 8, 14589.	12.8	306
2	Mn versus Al in Layered Oxide Cathodes in Lithiumâ€Ion Batteries: A Comprehensive Evaluation on Longâ€Term Cyclability. Advanced Energy Materials, 2018, 8, 1703154.	19.5	260
3	Modified Highâ€Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 6480-6485.	13.8	234
4	Eldfellite, NaFe(SO ₄) ₂ : an intercalation cathode host for low-cost Na-ion batteries. Energy and Environmental Science, 2015, 8, 3000-3005.	30.8	174
5	Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating. Journal of Materials Chemistry A, 2014, 2, 8696.	10.3	95
6	Inâ€Depth Analysis of the Degradation Mechanisms of Highâ€Nickel, Low/Noâ€Cobalt Layered Oxide Cathodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2100858.	19.5	79
7	Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries. Advanced Materials, 2022, 34, e2105855.	21.0	45
8	A Sodium–Antimony–Telluride Intermetallic Allows Sodiumâ€Metal Cycling at 100% Depth of Discharge and as an Anodeâ€Free Metal Battery. Advanced Materials, 2022, 34, e2106005.	21.0	40
9	Modified Highâ€Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithiumâ€ion Batteries. Angewandte Chemie, 2018, 130, 6590-6595.	2.0	38
10	Surface Stabilization with Fluorine of Layered Ultrahigh-Nickel Oxide Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 4514-4522.	6.7	9
11	Polystyrene-supported neutral lithium receptor for the recovery of high-purity LiPF ₆ from simulated degraded electrolyte. Journal of Materials Chemistry A, 2022, 10, 14788-14794.	10.3	2
12	Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	21.0	1