Andrew J Pierce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9713152/publications.pdf

Version: 2024-02-01

50 papers

6,517 citations

28 h-index 214800 47 g-index

50 all docs

50 docs citations

50 times ranked

8507 citing authors

#	Article	IF	CITATIONS
1	The multi-specific VH-based Humabody CB213 co-targets PD1 and LAG3 on T cells to promote anti-tumour activity. British Journal of Cancer, 2022, 126, 1168-1177.	6.4	9
2	SLFN11 informs on standard of care and novel treatments in a wide range of cancer models. British Journal of Cancer, 2021, 124, 951-962.	6.4	40
3	Evaluation of UV-C Decontamination of Clinical Tissue Sections for Spatially Resolved Analysis by Mass Spectrometry Imaging (MSI). Analytical Chemistry, 2021, 93, 2767-2775.	6.5	2
4	Preparation of Peripheral Blood Mononuclear Cell Pellets and Plasma from a Single Blood Draw at Clinical Trial Sites for Biomarker Analysis. Journal of Visualized Experiments, 2021, , .	0.3	2
5	Phase I Study of Ceralasertib (AZD6738), a Novel DNA Damage Repair Agent, in Combination with Weekly Paclitaxel in Refractory Cancer. Clinical Cancer Research, 2021, 27, 4700-4709.	7.0	54
6	Ceralasertib (AZD6738), an Oral ATR Kinase Inhibitor, in Combination with Carboplatin in Patients with Advanced Solid Tumors: A Phase I Study. Clinical Cancer Research, 2021, 27, 5213-5224.	7.0	53
7	Targeted Mass Spectrometry Enables Quantification of Novel Pharmacodynamic Biomarkers of ATM Kinase Inhibition. Cancers, 2021, 13, 3843.	3.7	7
8	Retrospective analysis of Schlafen11 (SLFN11) to predict the outcomes to therapies affecting the DNA damage response. British Journal of Cancer, 2021, 125, 1666-1676.	6.4	18
9	A guide to naming human nonâ€coding RNA genes. EMBO Journal, 2020, 39, e103777.	7.8	77
10	The Sister Chromatid Exchange (SCE) Assay. Methods in Molecular Biology, 2020, 2102, 441-457.	0.9	3
11	The Gene Cluster Instability (GCI) Assay for Recombination. Methods in Molecular Biology, 2020, 2102, 459-482.	0.9	0
12	Improved Therapeutic Window in <i>BRCA</i> -mutant Tumors with Antibody-linked Pyrrolobenzodiazepine Dimers with and without PARP Inhibition. Molecular Cancer Therapeutics, 2019, 18, 89-99.	4.1	19
13	Potent Immune Modulation by MEDI6383, an Engineered Human OX40 Ligand IgG4P Fc Fusion Protein. Molecular Cancer Therapeutics, 2018, 17, 1024-1038.	4.1	31
14	pRAD50: a novel and clinically applicable pharmacodynamic biomarker of both ATM and ATR inhibition identified using mass spectrometry and immunohistochemistry. British Journal of Cancer, 2018, 119, 1233-1243.	6.4	27
15	EVI1 carboxy-terminal phosphorylation is ATM-mediated and sustains transcriptional modulation and self-renewal via enhanced CtBP1 association. Nucleic Acids Research, 2018, 46, 7662-7674.	14.5	11
16	The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Science Advances, 2018, 4, eaat1719.	10.3	201
17	Abstract CT118: PK-Biomarker-Safety modelling aids choice of recommended Phase II dose and schedule for AZD6738 (ATR inhibitor). Cancer Research, 2018, 78, CT118-CT118.	0.9	7
18	Acquired cross-linker resistance associated with a novel spliced BRCA2 protein variant for molecular phenotyping of BRCA2 disruption. Cell Death and Disease, 2017, 8, e2875-e2875.	6.3	15

#	Article	IF	Citations
19	Targeting the kinase activities of ATR and ATM exhibits antitumoral activity in mouse models of <i>MLL</i> -rearranged AML. Science Signaling, 2016, 9, ra91.	3.6	63
20	ATM protein is deficient in over 40% of lung adenocarcinomas. Oncotarget, 2016, 7, 57714-57725.	1.8	35
21	A Monoclonal Antibody to ADAM17 Inhibits Tumor Growth by Inhibiting EGFR and Non–EGFR-Mediated Pathways. Molecular Cancer Therapeutics, 2015, 14, 1637-1649.	4.1	45
22	The Sister Chromatid Exchange (SCE) Assay. Methods in Molecular Biology, 2014, 1105, 439-455.	0.9	25
23	Measuring Recombination Proficiency in Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2014, 1105, 481-495.	0.9	16
24	The Gene Cluster Instability (GCI) Assay for Recombination. Methods in Molecular Biology, 2014, 1105, 457-479.	0.9	0
25	BCR/ABL modulates protein phosphorylation associated with the etoposide-induced DNA damage response. Journal of Proteomics, 2012, 77, 14-26.	2.4	9
26	Escherichia coli RecG functionally suppresses human Bloom syndrome phenotypes. BMC Molecular Biology, 2012, 13, 33.	3.0	6
27	Recombination phenotypes of the NCI-60 collection of human cancer cells. BMC Molecular Biology, 2011, 12, 23.	3.0	7
28	The splicing-factor related protein SFPQ/PSF interacts with RAD51D and is necessary for homology-directed repair and sister chromatid cohesion. Nucleic Acids Research, 2011, 39, 132-145.	14.5	188
29	Configuration and rearrangement of the human GAGE gene clusters. American Journal of Translational Research (discontinued), 2011, 3, 234-42.	0.0	6
30	MHF1-MHF2, a Histone-Fold-Containing Protein Complex, Participates in the Fanconi Anemia Pathway via FANCM. Molecular Cell, 2010, 37, 879-886.	9.7	178
31	Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa. Genome, 2010, 53, 1066-1082.	2.0	22
32	Human rRNA Gene Clusters Are Recombinational Hotspots in Cancer. Cancer Research, 2009, 69, 9096-9104.	0.9	138
33	Loss of Bloom syndrome protein destabilizes human gene cluster architecture. Human Molecular Genetics, 2009, 18, 3417-3428.	2.9	83
34	Loss of 26S Proteasome Function Leads to Increased Cell Size and Decreased Cell Number in Arabidopsis Shoot Organs Â. Plant Physiology, 2009, 150, 178-189.	4.8	117
35	Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Research, 2008, 18, 13-18.	5.5	248
36	Measuring Recombination Proficiency in Mouse Embryonic Stem Cells., 2005, 291, 373-384.		49

#	Article	IF	CITATIONS
37	Hypoxia-Induced Down-regulation of BRCA1 Expression by E2Fs. Cancer Research, 2005, 65, 11597-11604.	0.9	313
38	Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1110-1115.	7.1	348
39	Genetic Steps of Mammalian Homologous Repair with Distinct Mutagenic Consequences. Molecular and Cellular Biology, 2004, 24, 9305-9316.	2.3	439
40	ATP Hydrolysis by Mammalian RAD51 Has a Key Role during Homology-directed DNA Repair. Journal of Biological Chemistry, 2002, 277, 20185-20194.	3.4	124
41	Variant XRCC3 implicated in cancer is functional in homology-directed repair of double-strand breaks. Oncogene, 2002, 21, 4176-4180.	5.9	107
42	BRCA2 Is Required for Homology-Directed Repair of Chromosomal Breaks. Molecular Cell, 2001, 7, 263-272.	9.7	897
43	BCR/ABL Regulates Mammalian RecA Homologs, Resulting in Drug Resistance. Molecular Cell, 2001, 8, 795-806.	9.7	290
44	NHEJ Deficiency and Disease. Molecular Cell, 2001, 8, 1160-1161.	9.7	39
45	Double-strand breaks and tumorigenesis. Trends in Cell Biology, 2001, 11, S52-S59.	7.9	180
46	Double-strand breaks and tumorigenesis. Trends in Cell Biology, 2001, 11, S52-S59.	7.9	135
47	Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes and Development, 2001, 15, 3237-3242.	5.9	457
48	XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes and Development, 1999, 13, 2633-2638.	5.9	1,180
49	DNA Polymerase $\hat{\Gamma}$ Is Required for Human Mismatch Repair in Vitro. Journal of Biological Chemistry, 1997, 272, 10917-10921.	3.4	186
50	A conserved DNA structural control element modulates transcription of a mammalian gene. Nucleic Acids Research, 1992, 20, 6583-6587.	14.5	11