Tjakko Abee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9709335/publications.pdf Version: 2024-02-01

TIAKKO AREE

#	Article	IF	CITATIONS
1	Chronic Release of Tailless Phage Particles from Lactococcus lactis. Applied and Environmental Microbiology, 2022, 88, AEM0148321.	1.4	13
2	Bacterial microcompartments in food-related microbes. Current Opinion in Food Science, 2022, 43, 128-135.	4.1	4
3	Lichenysin Production by Bacillus licheniformis Food Isolates and Toxicity to Human Cells. Frontiers in Microbiology, 2022, 13, 831033.	1.5	15
4	Extracellular vesicle formation in <i>Lactococcus lactis</i> is stimulated by prophageâ€encoded holin–lysin system. Microbial Biotechnology, 2022, 15, 1281-1295.	2.0	17
5	Physiological Roles of Short-Chain and Long-Chain Menaquinones (Vitamin K2) in Lactococcus cremoris. Frontiers in Microbiology, 2022, 13, 823623.	1.5	5
6	Comparative Analysis of L-Fucose Utilization and Its Impact on Growth and Survival of Campylobacter Isolates. Frontiers in Microbiology, 2022, 13, 872207.	1.5	1
7	Role of Base Excision Repair in Listeria monocytogenes DNA Stress Survival During Infections. Journal of Infectious Diseases, 2021, 223, 721-732.	1.9	1
8	Genomics of tailless bacteriophages in a complex lactic acid bacteria starter culture. International Dairy Journal, 2021, 114, 104900.	1.5	6
9	Variability in lag duration of Listeria monocytogenes strains in half Fraser enrichment broth after stress affects the detection efficacy using the ISO 11290-1 method. International Journal of Food Microbiology, 2021, 337, 108914.	2.1	11
10	Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes. MSystems, 2021, 6, .	1.7	18
11	Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization of Propionibacterium freudenreichii. Frontiers in Microbiology, 2021, 12, 679827.	1.5	9
12	<i>Propionibacterium freudenreichii</i> thrives in microaerobic conditions by complete oxidation of lactate to <scp>CO₂</scp> . Environmental Microbiology, 2021, 23, 3116-3129.	1.8	12
13	Amino acid substitutions in ribosomal protein RpsU enable switching between high fitness and multiple-stress resistance in Listeria monocytogenes. International Journal of Food Microbiology, 2021, 351, 109269.	2.1	7
14	Anaerobic Growth of <i>Listeria monocytogenes</i> on Rhamnose Is Stimulated by Vitamin B ₁₂ and Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization. MSphere, 2021, 6, e0043421.	1.3	5
15	Lactococcus lactis Mutants Obtained From Laboratory Evolution Showed Elevated Vitamin K2 Content and Enhanced Resistance to Oxidative Stress. Frontiers in Microbiology, 2021, 12, 746770.	1.5	9
16	Genomic characteristics of Listeria monocytogenes isolated during mushroom (Agaricus bisporus) production and processing. International Journal of Food Microbiology, 2021, 360, 109438.	2.1	16
17	Heterogeneity in single-cell outgrowth of Listeria monocytogenes in half Fraser enrichment broth is affected by strain variability and physiological state. Food Research International, 2021, 150, 110783.	2.9	5
18	Different carbon sources result in differential activation of sigma B and stress resistance in Listeria monocytogenes. International Journal of Food Microbiology, 2020, 320, 108504.	2.1	12

#	Article	IF	CITATIONS
19	Characterization of sporulation dynamics of Pseudoclostridium thermosuccinogenes using flow cytometry. Anaerobe, 2020, 63, 102208.	1.0	8
20	Delivery of genome editing tools by bacterial extracellular vesicles. Microbial Biotechnology, 2019, 12, 71-73.	2.0	12
21	Inactivation of conidia from three Penicillium spp. isolated from fruit juices by conventional and alternative mild preservation technologies and disinfection treatments. Food Microbiology, 2019, 81, 108-114.	2.1	31
22	Long-chain vitamin K2 production in Lactococcus lactis is influenced by temperature, carbon source, aeration and mode of energy metabolism. Microbial Cell Factories, 2019, 18, 129.	1.9	31
23	Dynamic modelling of brewers' yeast and Cyberlindnera fabianii co-culture behaviour for steering fermentation performance. Food Microbiology, 2019, 83, 113-121.	2.1	8
24	Application of a partial cell recycling chemostat for continuous production of aroma compounds at near-zero growth rates. BMC Research Notes, 2019, 12, 173.	0.6	5
25	Aroma formation in retentostat co-cultures of Lactococcus lactis and Leuconostoc mesenteroides. Food Microbiology, 2019, 82, 151-159.	2.1	19
26	Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization Stimulates Anaerobic Growth of Listeria monocytogenes EGDe. Frontiers in Microbiology, 2019, 10, 2660.	1.5	22
27	Role of cell surface composition and lysis in static biofilm formation by Lactobacillus plantarum WCFS1. International Journal of Food Microbiology, 2018, 271, 15-23.	2.1	11
28	Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates. Food Microbiology, 2018, 73, 216-226.	2.1	38
29	Glycerol metabolism induces Listeria monocytogenes biofilm formation at the air-liquid interface. International Journal of Food Microbiology, 2018, 273, 20-27.	2.1	19
30	Dynamics in Copy Numbers of Five Plasmids of a Dairy Lactococcus lactis Strain under Dairy-Related Conditions Including Near-Zero Growth Rates. Applied and Environmental Microbiology, 2018, 84, .	1.4	2
31	Citrate, low pH and amino acid limitation induce citrate utilization in <i>Lactococcus lactis</i> biovar diacetylactis. Microbial Biotechnology, 2018, 11, 369-380.	2.0	24
32	Aroma formation during cheese ripening is best resembled by Lactococcus lactis retentostat cultures. Microbial Cell Factories, 2018, 17, 104.	1.9	26
33	Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stress-tolerance and virulence of Listeria monocytogenes variants. International Journal of Food Microbiology, 2018, 283, 14-21.	2.1	15
34	Gram-Positive Bacterial Extracellular Vesicles and Their Impact on Health and Disease. Frontiers in Microbiology, 2018, 9, 1502.	1.5	191
35	Large plasmidome of dairy Lactococcus lactis subsp. lactis biovar diacetylactis FM03P encodes technological functions and appears highly unstable. BMC Genomics, 2018, 19, 620.	1.2	40
36	Tiny but mighty: bacterial membrane vesicles in food biotechnological applications. Current Opinion in Biotechnology, 2018, 49, 179-184.	3.3	20

#	Article	IF	CITATIONS
37	Analysis of Germination Capacity and Germinant Receptor (Sub)clusters of Genome-Sequenced Bacillus cereus Environmental Isolates and Model Strains. Applied and Environmental Microbiology, 2017, 83, .	1.4	12
38	Genome Sequences of Cyberlindnera fabianii 65, Pichia kudriavzevii 129, and Saccharomyces cerevisiae 131 Isolated from Fermented Masau Fruits in Zimbabwe. Genome Announcements, 2017, 5, .	0.8	9
39	Persistent Listeria monocytogenes strains isolated from mussel production facilities form more biofilm but are not linked to specific genetic markers. International Journal of Food Microbiology, 2017, 256, 45-53.	2.1	50
40	Quantitative assessment of viable cells of Lactobacillus plantarum strains in single, dual and multi-strain biofilms. International Journal of Food Microbiology, 2017, 244, 43-51.	2.1	7
41	Performance of nonâ€conventional yeasts in coâ€culture with brewers' yeast for steering ethanol and aroma production. Microbial Biotechnology, 2017, 10, 1591-1602.	2.0	63
42	Isolation and characterization of Lactobacillus helveticus DSM 20075 variants with improved autolytic capacity. International Journal of Food Microbiology, 2017, 241, 173-180.	2.1	13
43	Complete Genome Sequences of Lactococcus lactis subsp. <i>lactis</i> bv. diacetylactis FM03 and Leuconostoc mesenteroides FM06 Isolated from Cheese. Genome Announcements, 2017, 5, .	0.8	6
44	Comparative Genomics of Iron-Transporting Systems in Bacillus cereus Strains and Impact of Iron Sources on Growth and Biofilm Formation. Frontiers in Microbiology, 2016, 7, 842.	1.5	26
45	Recovery of Heat Treated Bacillus cereus Spores Is Affected by Matrix Composition and Factors with Putative Functions in Damage Repair. Frontiers in Microbiology, 2016, 7, 1096.	1.5	7
46	Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity. PLoS ONE, 2016, 11, e0156796.	1.1	35
47	Identification of CdnL, a Putative Transcriptional Regulator Involved in Repair and Outgrowth of Heat-Damaged Bacillus cereus Spores. PLoS ONE, 2016, 11, e0148670.	1.1	8
48	Modeling and Validation of the Ecological Behavior of Wild-Type Listeria monocytogenes and Stress-Resistant Variants. Applied and Environmental Microbiology, 2016, 82, 5389-5401.	1.4	15
49	Draft Whole-Genome Sequences of Three Lactobacillus plantarum Food Isolates. Genome Announcements, 2016, 4, .	0.8	2
50	Draft Genome Sequences of Four Thermophilic Spore Formers Isolated from a Dairy-Processing Environment. Genome Announcements, 2016, 4, .	0.8	3
51	Draft Whole-Genome Sequences of 11 Bacillus cereus Food Isolates. Genome Announcements, 2016, 4, .	0.8	8
52	Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Annual Review of Food Science and Technology, 2016, 7, 457-482.	5.1	117
53	Sporulation dynamics and spore heat resistance in wet and dry biofilms of Bacillus cereus. Food Control, 2016, 60, 493-499.	2.8	31
54	Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores. Microbiome, 2015, 3, 30.	4.9	21

#	Article	IF	CITATIONS
55	<i>Listeria monocytogenes</i> repellence by enzymatically modified <scp>PES</scp> surfaces. Journal of Applied Polymer Science, 2015, 132, .	1.3	8
56	Diversity of acid stress resistant variants of Listeria monocytogenes and the potential role of ribosomal protein S21 encoded by rpsU. Frontiers in Microbiology, 2015, 6, 422.	1.5	35
57	Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics. PLoS ONE, 2015, 10, e0127036.	1.1	13
58	Bacillus cereus ATCC 14579 RpoN (Sigma 54) Is a Pleiotropic Regulator of Growth, Carbohydrate Metabolism, Motility, Biofilm Formation and Toxin Production. PLoS ONE, 2015, 10, e0134872.	1.1	59
59	Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates. International Journal of Food Microbiology, 2015, 207, 23-29.	2.1	66
60	Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron. International Journal of Food Microbiology, 2015, 200, 72-79.	2.1	72
61	Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth. International Journal of Food Microbiology, 2015, 213, 110-117.	2.1	13
62	Impact of growth conditions and role of sigB on Listeria monocytogenes fitness in single and mixed biofilms cultured with Lactobacillus plantarum. Food Research International, 2015, 71, 140-145.	2.9	9
63	Performance of stress resistant variants of Listeria monocytogenes in mixed species biofilms with Lactobacillus plantarum. International Journal of Food Microbiology, 2015, 213, 24-30.	2.1	11
64	Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores. International Journal of Food Microbiology, 2015, 201, 27-34.	2.1	28
65	Differential outgrowth potential of Clostridium perfringens food-borne isolates with various cpe-genotypes in vacuum-packed ground beef during storage at 12°C. International Journal of Food Microbiology, 2015, 194, 40-45.	2.1	9
66	Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores. Food Microbiology, 2015, 45, 26-33.	2.1	69
67	Diversity assessment of Listeria monocytogenes biofilm formation: Impact of growth condition, serotype and strain origin. International Journal of Food Microbiology, 2013, 165, 259-264.	2.1	163
68	Surface behaviour of S. Typhimurium, S. Derby, S. Brandenburg and S. Infantis. Veterinary Microbiology, 2013, 161, 305-314.	0.8	34
69	Isolation and quantification of highly acid resistant variants of Listeria monocytogenes. International Journal of Food Microbiology, 2013, 166, 508-514.	2.1	56
70	Complete Genome Sequence of Anoxybacillus flavithermus TNO-09.006, a Thermophilic Sporeformer Associated with a Dairy-Processing Environment. Genome Announcements, 2013, 1, .	0.8	18
71	Abiotic and Microbiotic Factors Controlling Biofilm Formation by Thermophilic Sporeformers. Applied and Environmental Microbiology, 2013, 79, 5652-5660.	1.4	43
72	Catalase Activity as a Biomarker for Mild-Stress-Induced Robustness in Bacillus weihenstephanensis. Applied and Environmental Microbiology, 2013, 79, 57-62.	1.4	30

#	Article	IF	CITATIONS
73	Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1. Microbiology (United Kingdom), 2012, 158, 293-300.	0.7	54
74	Impact of Sorbic Acid on Germination and Outgrowth Heterogeneity of Bacillus cereus ATCC 14579 Spores. Applied and Environmental Microbiology, 2012, 78, 8477-8480.	1.4	10
75	Complete Genome Sequence of Geobacillus thermoglucosidans TNO-09.020, a Thermophilic Sporeformer Associated with a Dairy-Processing Environment. Journal of Bacteriology, 2012, 194, 4118-4118.	1.0	31
76	Diversity in biofilm formation and production of curli fimbriae and cellulose of <i>Salmonella</i> Typhimurium strains of different origin in high and low nutrient medium. Biofouling, 2012, 28, 51-63.	0.8	75
77	A multicomponent sugar phosphate sensor system specifically induced in <i>Bacillus cereus</i> during infection of the insect gut. FASEB Journal, 2012, 26, 3336-3350.	0.2	11
78	Primary and secondary oxidative stress in <i>Bacillus</i> . Environmental Microbiology, 2011, 13, 1387-1394.	1.8	124
79	<i>Bacillus cereus</i> responses to acid stress. Environmental Microbiology, 2011, 13, 2835-2843.	1.8	61
80	Germination and outgrowth of spores of Bacillus cereus group members: Diversity and role of germinant receptors. Food Microbiology, 2011, 28, 199-208.	2.1	89
81	Clostridial spore germination versus bacilli: Genome mining and current insights. Food Microbiology, 2011, 28, 266-274.	2.1	59
82	Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid. International Journal of Food Microbiology, 2011, 144, 421-431.	2.1	184
83	Heat stress leads to superoxide formation in Bacillus cereus detected using the fluorescent probe MitoSOX. International Journal of Food Microbiology, 2011, 151, 119-122.	2.1	22
84	Understanding microbial behavior within and outside the host to improve food functionality and safety. Current Opinion in Biotechnology, 2011, 22, 133-135.	3.3	0
85	From transcriptional landscapes to the identification of biomarkers for robustness. Microbial Cell Factories, 2011, 10, S9.	1.9	29
86	Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology, 2011, 22, 172-179.	3.3	240
87	Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Current Opinion in Biotechnology, 2011, 22, 180-186.	3.3	47
88	Isolation of Highly Heat-Resistant Listeria monocytogenes Variants by Use of a Kinetic Modeling-Based Sampling Scheme. Applied and Environmental Microbiology, 2011, 77, 2617-2624.	1.4	24
89	Novel σ B regulation modules of Gram-positive bacteria involve the use of complex hybrid histidine kinases. Microbiology (United Kingdom), 2011, 157, 3-12.	0.7	31
90	Generation of Variants in Listeria monocytogenes Continuous-Flow Biofilms Is Dependent on Radical-Induced DNA Damage and RecA-Mediated Repair. PLoS ONE, 2011, 6, e28590.	1.1	21

#	Article	IF	CITATIONS
91	Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks. International Journal of Food Microbiology, 2010, 137, 13-21.	2.1	45
92	Germinant receptor diversity and germination responses of four strains of the Bacillus cereus group. International Journal of Food Microbiology, 2010, 139, 108-115.	2.1	41
93	Comparative analysis of Bacillus weihenstephanensis KBAB4 spores obtained at different temperatures. International Journal of Food Microbiology, 2010, 140, 146-153.	2.1	49
94	A novel hybrid kinase is essential for regulating the Ïf ^B â€mediated stress response of <i>Bacillus cereus</i> . Environmental Microbiology, 2010, 12, 730-745.	1.8	30
95	Analysis of acidâ€stressed <i>Bacillus cereus</i> reveals a major oxidative response and inactivationâ€associated radical formation. Environmental Microbiology, 2010, 12, 873-885.	1.8	88
96	Short- and Long-Term Biomarkers for Bacterial Robustness: A Framework for Quantifying Correlations between Cellular Indicators and Adaptive Behavior. PLoS ONE, 2010, 5, e13746.	1.1	45
97	HrcA and DnaK are important for static and continuous-flow biofilm formation and disinfectant resistance in Listeria monocytogenes. Microbiology (United Kingdom), 2010, 156, 3782-3790.	0.7	33
98	Population Diversity of <i>Listeria monocytogenes</i> LO28: Phenotypic and Genotypic Characterization of Variants Resistant to High Hydrostatic Pressure. Applied and Environmental Microbiology, 2010, 76, 2225-2233.	1.4	48
99	Importance of SigB for <i>Listeria monocytogenes</i> Static and Continuous-Flow Biofilm Formation and Disinfectant Resistance. Applied and Environmental Microbiology, 2010, 76, 7854-7860.	1.4	105
100	Comparative Transcriptomic and Phenotypic Analysis of the Responses of <i>Bacillus cereus</i> to Various Disinfectant Treatments. Applied and Environmental Microbiology, 2010, 76, 3352-3360.	1.4	88
101	Direct-Imaging-Based Quantification of Bacillus cereus ATCC 14579 Population Heterogeneity at a Low Incubation Temperature. Applied and Environmental Microbiology, 2010, 76, 927-930.	1.4	11
102	Dependence of Continuous-Flow Biofilm Formation by Listeria monocytogenes EGD-e on SOS Response Factor YneA. Applied and Environmental Microbiology, 2010, 76, 1992-1995.	1.4	39
103	The SOS response of Listeria monocytogenes is involved in stress resistance and mutagenesis. Microbiology (United Kingdom), 2010, 156, 374-384.	0.7	84
104	Role of Germinant Receptors in Caco-2 Cell-Initiated Germination of <i>Bacillus cereus</i> ATCC 14579 Endospores. Applied and Environmental Microbiology, 2009, 75, 1201-1203.	1.4	11
105	Phenotypic and Transcriptomic Analyses of Mildly and Severely Salt-Stressed <i>Bacillus cereus</i> ATCC 14579 Cells. Applied and Environmental Microbiology, 2009, 75, 4111-4119.	1.4	95
106	The impact of oxygen availability on stress survival and radical formation of Bacillus cereus. International Journal of Food Microbiology, 2009, 135, 303-311.	2.1	32
107	The identification of response regulatorâ€specific binding sites reveals new roles of twoâ€component systems in <i>Bacillus cereus</i> and closely related lowâ€GC Gramâ€positives. Environmental Microbiology, 2008, 10, 2796-2809.	1.8	36
108	Role of Ureolytic Activity in Bacillus cereus Nitrogen Metabolism and Acid Survival. Applied and Environmental Microbiology, 2008, 74, 2370-2378.	1.4	30

#	Article	IF	CITATIONS
109	Inactivation Kinetics of Three Listeria monocytogenes Strains under High Hydrostatic Pressure. Journal of Food Protection, 2008, 71, 2007-2013.	0.8	47
110	Identification of the σ B Regulon of Bacillus cereus and Conservation of σ B -Regulated Genes in Low-GC-Content Gram-Positive Bacteria. Journal of Bacteriology, 2007, 189, 4384-4390.	1.0	53
111	The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology (United Kingdom), 2007, 153, 3593-3607.	0.7	120
112	Quantitative Analysis of Population Heterogeneity of the Adaptive Salt Stress Response and Growth Capacity of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 2007, 73, 4797-4804.	1.4	38
113	Air-Liquid Interface Biofilms of Bacillus cereus: Formation, Sporulation, and Dispersion. Applied and Environmental Microbiology, 2007, 73, 1481-1488.	1.4	217
114	Metabolic capacity of <i>Bacillus cereus</i> strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics. Environmental Microbiology, 2007, 9, 2933-2944.	1.8	47
115	Survival, Elongation, and Elevated Tolerance of Salmonella enterica Serovar Enteritidis at Reduced Water Activity. Journal of Food Protection, 2006, 69, 2681-2686.	0.8	50
116	Characterization of Germination Receptors of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 2006, 72, 44-53.	1.4	79
117	Influence of Sporulation Medium Composition on Transcription of ger Operons and the Germination Response of Spores of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 2006, 72, 3746-3749.	1.4	63
118	Distribution of prophages and SGI-1 antibiotic-resistance genes among different Salmonella enterica serovar Typhimurium isolates. Microbiology (United Kingdom), 2006, 152, 2137-2147.	0.7	25
119	Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis. Microbiology (United Kingdom), 2006, 152, 3035-3048.	0.7	48
120	The role of σB in the stress response of Gram-positive bacteria – targets for food preservation and safety. Current Opinion in Biotechnology, 2005, 16, 218-224.	3.3	161
121	Deletion of the sigB Gene in Bacillus cereus ATCC 14579 Leads to Hydrogen Peroxide Hyperresistance. Applied and Environmental Microbiology, 2005, 71, 6427-6430.	1.4	18
122	gerR , a Novel ger Operon Involved in l -Alanine- and Inosine-Initiated Germination of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 2005, 71, 774-781.	1.4	72
123	Analysis of the Role of RsbV, RsbW, and RsbY in Regulating σ B Activity in Bacillus cereus. Journal of Bacteriology, 2005, 187, 5846-5851.	1.0	43
124	Influence of Glutamate on Growth, Sporulation, and Spore Properties of Bacillus cereus ATCC 14579 in Defined Medium. Applied and Environmental Microbiology, 2005, 71, 3248-3254.	1.4	48
125	Identification of Sigma Factor ÏfB-Controlled Genes and Their Impact on Acid Stress, High Hydrostatic Pressure, and Freeze Survival in Listeria monocytogenes EGD-e. Applied and Environmental Microbiology, 2004, 70, 3457-3466.	1.4	185
126	Molecular and Physiological Analysis of the Role of Osmolyte Transporters BetL, Gbu, and OpuC in Growth of Listeria monocytogenes at Low Temperatures. Applied and Environmental Microbiology, 2004, 70, 2912-2918.	1.4	105

#	Article	IF	CITATIONS
127	Growth and Sporulation of Bacillus cereus ATCC 14579 under Defined Conditions: Temporal Expression of Genes for Key Sigma Factors. Applied and Environmental Microbiology, 2004, 70, 2514-2519.	1.4	67
128	The Alternative Sigma Factor Ïf B of Bacillus cereus : Response to Stress and Role in Heat Adaptation. Journal of Bacteriology, 2004, 186, 316-325.	1.0	72
129	Identification of σB-Dependent Genes in Bacillus cereus by Proteome and In Vitro Transcription Analysis. Journal of Bacteriology, 2004, 186, 4100-4109.	1.0	26
130	Impact of genomics on microbial food safety. Trends in Biotechnology, 2004, 22, 653-660.	4.9	40
131	Identification of Proteins Involved in the Heat Stress Response of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 2002, 68, 3486-3495.	1.4	117
132	Cold Shock Proteins of Lactococcus lactis MG1363 Are Involved in Cryoprotection and in the Production of Cold-Induced Proteins. Applied and Environmental Microbiology, 2001, 67, 5171-5178.	1.4	58
133	Analysis of the Role of OpuC, an Osmolyte Transport System, in Salt Tolerance and Virulence Potential of Listeria monocytogenes. Applied and Environmental Microbiology, 2001, 67, 2692-2698.	1.4	151
134	Physiological and Regulatory Effects of Controlled Overproduction of Five Cold Shock Proteins of Lactococcus lactis MG1363. Applied and Environmental Microbiology, 2000, 66, 3756-3763.	1.4	43
135	Changes in Glycolytic Activity of Lactococcus lactis Induced by Low Temperature. Applied and Environmental Microbiology, 2000, 66, 3686-3691.	1.4	74
136	Microbial stress response in minimal processing. International Journal of Food Microbiology, 1999, 50, 65-91.	2.1	378
137	Analysis of the role of 7ÂkDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology (United Kingdom), 1999, 145, 3185-3194.	0.7	67
138	Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiology Letters, 1995, 129, 1-9.	0.7	103
139	<i>Listeria monocytogenes</i> High Hydrostatic Pressure Resistance and Survival Strategies. , 0, , 101-115.		1