Todd Pittman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9707893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical imaging by means of two-photon quantum entanglement. Physical Review A, 1995, 52, R3429-R3432.	1.0	1,642
2	Probabilistic quantum logic operations using polarizing beam splitters. Physical Review A, 2001, 64, .	1.0	350
3	Photon-number resolution using time-multiplexed single-photon detectors. Physical Review A, 2003, 68, .	1.0	285
4	Experimental controlled-NOT logic gate for single photons in the coincidence basis. Physical Review A, 2003, 68, .	1.0	265
5	Can Two-Photon Interference be Considered the Interference of Two Photons?. Physical Review Letters, 1996, 77, 1917-1920.	2.9	198
6	Single photons on pseudodemand from stored parametric down-conversion. Physical Review A, 2002, 66, .	1.0	175
7	Quantum computing using single photons and the Zeno effect. Physical Review A, 2004, 70, .	1.0	171
8	Two-photon geometric optics. Physical Review A, 1996, 53, 2804-2815.	1.0	167
9	Demonstration of Nondeterministic Quantum Logic Operations Using Linear Optical Elements. Physical Review Letters, 2002, 88, 257902.	2.9	163
10	Heralding single photons from pulsed parametric down-conversion. Optics Communications, 2005, 246, 545-550.	1.0	162
11	Photon-number-resolving detection using time-multiplexing. Journal of Modern Optics, 2004, 51, 1499-1515.	0.6	137
12	Quantum relays and noise suppression using linear optics. Physical Review A, 2002, 66, .	1.0	108
13	Observation of Two-Photon Absorption at Low Power Levels Using Tapered Optical Fibers in Rubidium Vapor. Physical Review Letters, 2010, 105, 173602.	2.9	96
14	Postselection-free energy-time entanglement. Physical Review A, 1996, 54, R1-R4.	1.0	94
15	High-Fidelity Quantum Logic Operations Using Linear Optical Elements. Physical Review Letters, 2002, 89, 137901.	2.9	85
16	Cyclical quantum memory for photonic qubits. Physical Review A, 2002, 66, .	1.0	66
17	Violation of Bell's Inequality with Photons from Independent Sources. Physical Review Letters, 2003, 90, 240401.	2.9	64
18	Demonstration of quantum error correction using linear optics. Physical Review A, 2005, 71, .	1.0	63

Todd Pittman

#	Article	IF	CITATIONS
19	What we can learn about single photons in a two-photon interference experiment. Physical Review A, 1998, 57, 567-570.	1.0	54
20	Demonstration of feed-forward control for linear optics quantum computation. Physical Review A, 2002, 66, .	1.0	53
21	All-optical-switching demonstration using two-photon absorption and the Zeno effect. Physical Review A, 2013, 87, .	1.0	41
22	Probabilistic quantum encoder for single-photon qubits. Physical Review A, 2004, 69, .	1.0	32
23	Experimental tests of Bell's inequalities based on space-time and spin variables. Physical Review A, 1995, 51, 3495-3498.	1.0	29
24	Single photon source using laser pulses and two-photon absorption. Physical Review A, 2006, 74, .	1.0	29
25	Experimental demonstration of a quantum circuit using linear optics gates. Physical Review A, 2005, 71,	1.0	27
26	Quantum logic operations based on photon-exchange interactions. Physical Review A, 1999, 60, 917-936.	1.0	24
27	Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor. Physical Review A, 2015, 92, .	1.0	20
28	Noiseless attenuation using an optical parametric amplifier. Physical Review A, 2017, 96, .	1.0	19
29	Ultralow-power nonlinear optics using tapered optical fibers in metastable xenon. Physical Review A, 2013, 88, .	1.0	18
30	Heralded two-photon entanglement from probabilistic quantum logic operations on multiple parametric down-conversion sources. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 1478-1482.	1.9	17
31	Generation of entangled photon holes using quantum interference. Physical Review A, 2006, 74, .	1.0	16
32	Nonlinear transmission through a tapered fiber in rubidium vapor. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 267.	0.9	15
33	Saturation of atomic transitions using subwavelength diameter tapered optical fibers in rubidium vapor. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1997.	0.9	13
34	Investigation of a single-photon source based on quantum interference. New Journal of Physics, 2007, 9, 195-195.	1.2	12
35	Heralding on the detection of zero photons. Physical Review A, 2021, 104, .	1.0	12
36	lt's a Good Time for Time-Bin Qubits. Physics Magazine, 0, 6, .	0.1	11

TODD PITTMAN

#	Article	IF	CITATIONS
37	Nanofiber-segment ring resonator. Optics Letters, 2016, 41, 3683.	1.7	11
38	Optically enhanced production of metastable xenon. Optics Letters, 2016, 41, 4372.	1.7	11
39	Modifying quantum optical states by zero-photon subtraction. Physical Review A, 2022, 105, .	1.0	9
40	Low-power cross-phase modulation in a metastable xenon-filled cavity for quantum-information applications. Physical Review A, 2015, 92, .	1.0	8
41	Reduced decoherence using squeezing, amplification, and antisqueezing. Physical Review A, 2018, 98, .	1.0	8
42	Feasibility of single-photon cross-phase modulation using metastable xenon in a high finesse cavity. Optics Communications, 2015, 337, 57-61.	1.0	7
43	On the use of double entanglement in four-photon experiments. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 204, 193-197.	0.9	5
44	Saturated absorption at nanowatt power levels using metastable xenon in a high-finesse optical cavity. Optics Express, 2014, 22, 22882.	1.7	5
45	Role of pump coherence in two-photon interferometry. Physical Review A, 2011, 83, .	1.0	4
46	Optical attenuation without absorption. Physical Review A, 2019, 100, .	1.0	4
47	Two-Photon "Ghost―Image and Interference-Diffractiona. Annals of the New York Academy of Sciences, 1995, 755, 121-132.	1.8	3
48	Coherence of quantum states after noiseless attenuation. Physical Review A, 2022, 105, .	1.0	3
49	EPR and Two-Photon Interference Experiments Using Type-II Parametric Downconversiona. Annals of the New York Academy of Sciences, 1995, 755, 40-60.	1.8	2
50	Microcavities Using Holey Fibers. Journal of Lightwave Technology, 2007, 25, 3068-3071.	2.7	2
51	Nonlocal dispersion cancellation for three or more photons. Physical Review A, 2020, 102, .	1.0	2
52	Transmission characteristics of optical nanofibers in metastable xenon. Applied Optics, 2019, 58, 6470.	0.9	2
53	Photonic Quantum Computing using Forced Fermion-Like Behavior. AIP Conference Proceedings, 2011, ,	0.3	1
54	Time-bin-entangled photon holes. Physical Review A, 2012, 86, .	1.0	1

TODD PITTMAN

#	Article	IF	CITATIONS
55	Quantum logic operations using linear optical elements. , 2002, , .		1
56	Observation of two-photon absorption at low power levels using tapered optical fibers and rubidium vapor. , 2010, , .		1
57	Maximizing optical production of metastable xenon. Optics Express, 2020, 28, 24079.	1.7	1
58	Quantum Computing Using Linear Optics and the Zeno Effect. AIP Conference Proceedings, 2004, , .	0.3	0
59	Low Light-Level Two-Photon Absorption using Tapered Optical Fibers in Rubidium Vapor. , 2011, , .		0
60	Optical Nonlinearities Using Tapered Optical Fibers in Rubidium Vapor. , 2014, , .		0
61	Bell's Inequality Tests and Quantum Communication with Entangled Photon Holes. , 2007, , .		Ο
62	A Parametric Down-Conversion Source for Two-Photon Absorption Experiments. , 2008, , .		0
63	Observation of low-contrast all-optical switching based on the Zeno effect. , 2011, , .		Ο
64	Observation of Low-Contrast All-Optical Switching in Si3N4 Microdisks Based on the Zeno Effect. , 2012, , .		0
65	Enhanced transmission for ultra-low-power nonlinear optics experiments using tapered optical fibers in Rubidium vapor. , 2013, , .		Ο
66	Ultralow-power nonlinear optics using tapered optical fibers in noble gases. , 2014, , .		0
67	Optical Attenuation without Absorption. , 2019, , .		0
68	Optical Pumping in Xenon Atoms. , 2020, , .		0

Optical Pumping in Xenon Atoms. , 2020, , . 68