Marcio H Giacomoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/970180/publications.pdf

Version: 2024-02-01

48 papers

719 citations

687363 13 h-index 610901 24 g-index

48 all docs 48 docs citations

48 times ranked

868 citing authors

#	Article	IF	Citations
1	Probabilistic State Estimation in Water Networks. IEEE Transactions on Control Systems Technology, 2022, 30, 507-519.	5.2	8
2	Low Impact Development practices in the context of United Nations Sustainable Development Goals: A new concept, lessons learned and challenges. Critical Reviews in Environmental Science and Technology, 2022, 52, 2538-2581.	12.8	27
3	A Review on Interpretable and Explainable Artificial Intelligence in Hydroclimatic Applications. Water (Switzerland), 2022, 14, 1230.	2.7	20
4	Effects of the COVID-19 Pandemic on Water Utility Operations and Vulnerability. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	2.6	14
5	Impact of Internal Water Storage on the Pollutant Removal Efficiencies of Bioretention Systems and Sand Filter Basins in a Full-Scale Low Impact Development Testbed. , 2022, , .		O
6	Improving the Treatment Performance of Low Impact Development Practicesâ€"Comparison of Sand and Bioretention Soil Mixtures Using Column Experiments. Water (Switzerland), 2021, 13, 1210.	2.7	7
7	Assessing the Impact of Climate Change on Transportation Infrastructure Using the Hydrologic-Footprint-Residence Metric. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	1.9	6
8	Water and Wastewater Systems and Utilities: Challenges and Opportunities during the COVID-19 Pandemic. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	2.6	31
9	Energy-Efficient Optimal Water Flow Considering Pump Efficiency. , 2021, , .		2
10	Study the Performance of Various Stormwater Control Measures in a Single Full-Scale Low Impact Development (LID) Testbed under Changing Environments Using SWMM., 2021,,.		1
11	Spatial Assessment of Overland Flow, Pollutant Concentration, and First Flush Using a 2D Non-Point Source Pollution and Hydrological Model for Urban Catchments. , 2021, , .		O
12	Permeable Pavement Hydrological Model to Assess the Long-Term Efficiency of Maintenance Using High-Resolution Temperature and Rainfall Data., 2021,,.		1
13	Revisiting the Water Quality Sensor Placement Problem: Optimizing Network Observability and State Estimation Metrics. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	2.6	10
14	A New Derivativeâ€Free Linear Approximation for Solving the Network Water Flow Problem With Convergence Guarantees. Water Resources Research, 2020, 56, no.	4.2	7
15	Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming. IEEE Transactions on Control of Network Systems, 2020, 7, 1151-1163.	3.7	16
16	Low Impact Development Testbed to Study the Performance of Enhanced Bioretention Systems. , 2020, , .		0
17	Training Water Resources Systems Engineers to Communicate: Acting on Observations from On-the-Job Practitioners. Journal of Professional Issues in Engineering Education and Practice, 2019, 145, 04019012.	0.9	2
18	Bioretention performance under different rainfall regimes in subtropical conditions: A case study in São Carlos, Brazil. Journal of Environmental Management, 2019, 248, 109266.	7.8	23

#	Article	IF	CITATIONS
19	Assessing the Performance of Bioretention and Sand Filter Media Using Columns and Synthetic Stormwater. , 2019, , .		2
20	State Estimation in Water Distribution Networks through a New Successive Linear Approximation. , 2019, , .		6
21	Geometric Programming-Based Control for Nonlinear, DAE-Constrained Water Distribution Networks. , 2019, , .		6
22	A Fixed-Point Iteration for Steady-State Analysis of Water Distribution Networks. , 2018, , .		7
23	Simulation-Optimization Approach for the Logistics Network Design of Biomass Co-Firing with Coal at Power Plants. Sustainability, 2018, 10, 4299.	3.2	9
24	Decentralized Low Impact Development (LID) Practices Addressing the Security of the Water-Energy-Food Nexus. , 2018, , .		0
25	The Effects of Climate Change on Low Impact Development (LID) Performanceâ€"A Case of Study in Sao Carlos, Brazil. , 2018, , .		1
26	Assessing the performance of sand filter basins in treating urban stormwater runoff. Environmental Monitoring and Assessment, 2018, 190, 697.	2.7	18
27	Battle of the Attack Detection Algorithms: Disclosing Cyber Attacks on Water Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	2.6	127
28	Identification of Cyber Attacks on Water Distribution Systems by Unveiling Low-Dimensionality in the Sensory Data. , 2017, , .		13
29	Application of a Multiobjective Genetic Algorithm to Reduce Wet Weather Sanitary Sewer Overflows and Surcharge. Journal of Sustainable Water in the Built Environment, 2017, 3, .	1.6	7
30	Enhancing the Performance of a Multiobjective Evolutionary Algorithm for Sanitary Sewer Overflow Reduction. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	2.6	9
31	More Integrated Formal Education and Practice in Water Resources Systems Analysis. Journal of Water Resources Planning and Management - ASCE, 2017, 143, 02517001.	2.6	5
32	Incorporating Dynamic Land Use Change into Hydrologic Model to Assess Urbanization Effects on Hydrologic Flow Regime. , $2017, \dots$		0
33	Enhancing the Performance of Multiobjective Evolutionary Algorithms for Sanitary Sewer Rehabilitation Problems. , 2016, , .		0
34	Multi-Objective Approach to Reduce Sanitary Sewer Overflow Using Genetic Algorithms. , 2016, , .		1
35	Use of a Cellular Automata Model to Assess Land Use Change and Its Effects on the Hydrologic Flow Regime. , 2016, , .		0
36	Multiobjective Genetic Optimization Approach to Identify Pipe Segment Replacements and Inline Storages to Reduce Sanitary Sewer Overflows. Water Resources Management, 2016, 30, 3707-3722.	3.9	17

#	Article	lF	CITATIONS
37	Sanitary Sewer Overflow Reduction Optimization Using Genetic Algorithm., 2015, , .		3
38	Use of Multiobjective Evolutionary Algorithm Optimization for Low-Impact Development Placement. , 2015, , .		5
39	Low Impact Development Placement Investigation Using a Multi-Objective Evolutionary Optimization Algorithm. , 2015, , .		O
40	Hydrologic Impact Assessment of Land Cover Change and Stormwater Management Using the Hydrologic Footprint Residence. Journal of the American Water Resources Association, 2014, 50, 1242-1256.	2.4	26
41	Complex Adaptive Systems Approach to Simulate the Sustainability of Water Resources and Urbanization. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 554-564.	2.6	66
42	An evolutionary algorithm approach to generate distinct sets of non-dominated solutions for wicked problems. Engineering Applications of Artificial Intelligence, 2013, 26, 1442-1457.	8.1	21
43	A Coupled Framework of Cellular Automata-based Fire Spread Model and Water Distribution System for Dynamic Simulation of Urban Conflagration Events. , 2013, , .		O
44	Hydrologic Footprint Residence: Environmentally Friendly Criteria for Best Management Practices. Journal of Hydrologic Engineering - ASCE, 2012, 17, 99-108.	1.9	18
45	A multi-objective niching co-evolutionary algorithm (MNCA) for identifying diverse sets of non-dominated solutions. , $2011, \ldots$		1
46	Simulation of Combined Best Management Practices and Low Impact Development for Sustainable Stormwater Management ¹ . Journal of the American Water Resources Association, 2010, 46, 907-918.	2.4	171
47	Using the Hydrologic Footprint Residence to Evaluate Low Impact Development in Urban Areas. , 2010, ,		4
48	Improving Hydrologic Sustainability of Texas A& M University Campus., 2009,,.		1