
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/96969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Direct Role for NKG2D/MICA Interaction in Villous Atrophy during Celiac Disease. Immunity, 2004, 21, 367-377.	14.3	660
2	IgA Fc Receptors. Annual Review of Immunology, 2003, 21, 177-204.	21.8	489
3	Overexpression of Natural Killer T Cells Protects Vα14-Jα281 Transgenic Nonobese Diabetic Mice against Diabetes. Journal of Experimental Medicine, 1998, 188, 1831-1839.	8.5	370
4	Identification of FcαRI as an Inhibitory Receptor that Controls Inflammation. Immunity, 2005, 22, 31-42.	14.3	314
5	Identification of the Transferrin Receptor as a Novel Immunoglobulin (Ig)a1 Receptor and Its Enhanced Expression on Mesangial Cells in Iga Nephropathy. Journal of Experimental Medicine, 2001, 194, 417-426.	8.5	262
6	Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. Journal of Experimental Medicine, 2008, 205, 143-154.	8.5	257
7	Cellular distribution, regulation, and biochemical nature of an Fc alpha receptor in humans Journal of Experimental Medicine, 1990, 171, 597-613.	8.5	231
8	New insights in the pathogenesis of immunoglobulin A vasculitis (Henoch-Schönlein purpura). Autoimmunity Reviews, 2017, 16, 1246-1253.	5.8	228
9	Fcα Receptor (Cd89) Mediates the Development of Immunoglobulin a (Iga) Nephropathy (Berger's) Tj ETQq1 1	0.784314 8.5	rgBT /Overloc
10	The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nature Immunology, 2008, 9, 1148-1156.	14.5	200
11	Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunology, 2010, 3, 461-474.	6.0	192
12	Understanding Fc Receptor Involvement in Inflammatory Diseases: From Mechanisms to New Therapeutic Tools. Frontiers in Immunology, 2019, 10, 811.	4.8	179
13	Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. Journal of Experimental Medicine, 2010, 207, 731-750.	8.5	169
14	Expression of surrogate light chain receptors is restricted to a late stage in pre-B cell differentiation. Cell, 1993, 73, 73-86.	28.9	167
15	Glycosylation and Size of IgA1 Are Essential for Interaction with Mesangial Transferrin Receptor in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2004, 15, 622-634.	6.1	160
16	Charge and size of mesangial IgA in IgA nephropathy. Kidney International, 1985, 28, 666-671.	5.2	151
17	Inhibitory ITAMs as novel regulators of immunity. Immunological Reviews, 2009, 232, 59-71.	6.0	151
18	Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. Journal of Experimental Medicine, 2012, 209, 793-806.	8.5	145

#	Article	IF	CITATIONS
19	Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity. Nature Immunology, 2021, 22, 322-335.	14.5	145
20	A Subset of Human Dendritic Cells Expresses IgA Fc Receptor (CD89), Which Mediates Internalization and Activation Upon Cross-Linking by IgA Complexes. Journal of Immunology, 2001, 166, 346-352.	0.8	141
21	Autoimmunity in IgA Deficiency: Revisiting the Role of IgA as a Silent Housekeeper. Journal of Clinical Immunology, 2008, 28, 56-61.	3.8	135
22	Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clinical and Experimental Immunology, 2009, 158, 43-50.	2.6	122
23	CD16 promotes Escherichia coli sepsis through an FcRÎ ³ inhibitory pathway that prevents phagocytosis and facilitates inflammation. Nature Medicine, 2007, 13, 1368-1374.	30.7	118
24	Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. Journal of Clinical Investigation, 2014, 124, 4577-4589.	8.2	111
25	A neutralizing monoclonal antibody (mAb A24) directed against the transferrin receptor induces apoptosis of tumor T lymphocytes from ATL patients. Blood, 2004, 103, 1838-1845.	1.4	101
26	Down-regulation of Fcα receptors on blood cells of IgA nephropathy patients: Evidence for a negative regulatory role of serum IgA. Kidney International, 1998, 53, 1321-1335.	5.2	97
27	Interactions Among Secretory Immunoglobulin A, CD71, and Transglutaminase-2 Affect Permeability of Intestinal Epithelial Cells to Gliadin Peptides. Gastroenterology, 2012, 143, 698-707.e4.	1.3	94
28	Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney International, 2015, 88, 815-822.	5.2	94
29	Engagement of Transferrin Receptor by Polymeric IgA1: Evidence for a Positive Feedback Loop Involving Increased Receptor Expression and Mesangial Cell Proliferation in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2005, 16, 2667-2676.	6.1	90
30	IgA, IgA Receptors, and Their Anti-inflammatory Properties. Current Topics in Microbiology and Immunology, 2014, 382, 221-235.	1.1	90
31	Enhanced Expression of the CD71 Mesangial IgA1 Receptor in Berger Disease and Henoch-Schönlein Nephritis: Association between CD71 Expression and IgA Deposits. Journal of the American Society of Nephrology: JASN, 2003, 14, 327-337.	6.1	88
32	Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nature Communications, 2017, 8, 246.	12.8	87
33	IgG1 and IVIg induce inhibitory ITAM signaling through FcÎ ³ RIII controlling inflammatory responses. Blood, 2012, 119, 3084-3096.	1.4	84
34	A Humanized Mouse Model of Idiopathic Nephrotic Syndrome Suggests a Pathogenic Role for Immature Cells. Journal of the American Society of Nephrology: JASN, 2007, 18, 2732-2739.	6.1	80
35	Inhibitory ITAM Signaling by FcαRI-FcRγ Chain Controls Multiple Activating Responses and Prevents Renal Inflammation. Journal of Immunology, 2008, 180, 2669-2678.	0.8	80
36	Alternative Endocytic Pathway for Immunoglobulin A Fc Receptors (CD89) Depends on the Lack of FcRÎ ³ Association and Protects against Degradation of Bound Ligand. Journal of Biological Chemistry, 1999, 274, 7216-7225.	3.4	79

#	Article	IF	CITATIONS
37	Gluten exacerbates IgA nephropathy in humanized mice through gliadin–CD89 interaction. Kidney International, 2015, 88, 276-285.	5.2	79
38	Shifting FcÎ ³ RIIA-ITAM from activation to inhibitory configuration ameliorates arthritis. Journal of Clinical Investigation, 2014, 124, 3945-3959.	8.2	77
39	The IgA1 immune complex–mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney International, 2012, 82, 1284-1296.	5.2	75
40	Glomerular and serum immunoglobulin G subclasses in membranous nephropathy and anti-glomerular basement membrane nephritis. Clinical Immunology and Immunopathology, 1988, 46, 186-194.	2.0	73
41	Molecular Insights into the Pathogenesis of IgA Nephropathy. Trends in Molecular Medicine, 2015, 21, 762-775.	6.7	72
42	The TRPM4 Channel Controls Monocyte and Macrophage, but Not Neutrophil, Function for Survival in Sepsis. Journal of Immunology, 2012, 189, 3689-3699.	0.8	71
43	Role of IgA and IgA Fc Receptors in Inflammation. Journal of Clinical Immunology, 2010, 30, 1-9.	3.8	70
44	Both IgA nephropathy and alcoholic cirrhosis feature abnormally glycosylated IgA1 and soluble CD89–IgA and IgG–IgA complexes: common mechanisms for distinct diseases. Kidney International, 2011, 80, 1352-1363.	5.2	69
45	Anti-inflammatory role of the IgA Fc receptor (CD89): From autoimmunity to therapeutic perspectives. Autoimmunity Reviews, 2013, 12, 666-669.	5.8	69
46	Inhibitory ITAM Signaling Traps Activating Receptors with the Phosphatase SHP-1 to Form Polarized "Inhibisome―Clusters. Science Signaling, 2011, 4, ra24.	3.6	67
47	Gluten induces coeliac-like disease in sensitised mice involving IgA, CD71 and transglutaminase 2 interactions that are prevented by probiotics. Laboratory Investigation, 2012, 92, 625-635.	3.7	66
48	Gene- and exon-expression profiling reveals an extensive LPS-induced response in immune cells in patients with cirrhosis. Journal of Hepatology, 2013, 58, 936-948.	3.7	66
49	Secretory IgA Induces Tolerogenic Dendritic Cells through SIGNR1 Dampening Autoimmunity in Mice. Journal of Immunology, 2013, 191, 2335-2343.	0.8	66
50	The Phospholipid Scramblases 1 and 4 Are Cellular Receptors for the Secretory Leukocyte Protease Inhibitor and Interact with CD4 at the Plasma Membrane. PLoS ONE, 2009, 4, e5006.	2.5	65
51	Mouse Mast Cell Protease-4 Deteriorates Renal Function by Contributing to Inflammation and Fibrosis in Immune Complex-Mediated Glomerulonephritis. Journal of Immunology, 2010, 185, 624-633.	0.8	64
52	Biomarkers of IgA vasculitis nephritis in children. PLoS ONE, 2017, 12, e0188718.	2.5	63
53	Mast Cell-Mediated Remodeling and Fibrinolytic Activity Protect against Fatal Glomerulonephritis. Journal of Immunology, 2006, 176, 5607-5615.	0.8	62
54	Polymeric IgA1 controls erythroblast proliferation and accelerates erythropoiesis recovery in anemia. Nature Medicine, 2011, 17, 1456-1465.	30.7	62

#	Article	IF	CITATIONS
55	Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice. Nephrology Dialysis Transplantation, 2019, 34, 1135-1144.	0.7	59
56	Pathogenic significance of IgA receptor interactions in IgA nephropathy. Trends in Molecular Medicine, 2002, 8, 464-468.	6.7	58
57	The Glomerular Response to IgA Deposition in IgA Nephropathy. Seminars in Nephrology, 2008, 28, 88-95.	1.6	56
58	Airway Fungal Colonization Compromises the Immune System Allowing Bacterial Pneumonia to Prevail. Critical Care Medicine, 2013, 41, e191-e199.	0.9	54
59	Recent advances in adult T-cell leukemia therapy: focus on a new anti-transferrin receptor monoclonal antibody. Leukemia, 2008, 22, 42-48.	7.2	53
60	Inhibitory ITAMs: a matter of life and death. Trends in Immunology, 2008, 29, 366-373.	6.8	51
61	NOX5 and p22phox are 2 novel regulators of human monocytic differentiation into dendritic cells. Blood, 2017, 130, 1734-1745.	1.4	49
62	IgA Fc receptor (CD89) activation enables coupling to syk and Btk tyrosine kinase pathways: differential signaling after IFN-γ or phorbol ester stimulation. Journal of Leukocyte Biology, 1998, 63, 636-642.	3.3	48
63	Potential Role of NKG2D/MHC Class I-Related Chain A Interaction in Intrathymic Maturation of Single-Positive CD8 T Cells. Journal of Immunology, 2003, 171, 1909-1917.	0.8	48
64	Fcα receptor I activation induces leukocyte recruitment and promotes aggravation of glomerulonephritis through the FcRγ adaptor. European Journal of Immunology, 2007, 37, 1116-1128.	2.9	48
65	Autoantibodies against podocytic UCHL1 are associated with idiopathic nephrotic syndrome relapses and induce proteinuria in mice. Journal of Autoimmunity, 2018, 89, 149-161.	6.5	48
66	LC3-associated phagocytosis protects against inflammation and liver fibrosis via immunoreceptor inhibitory signaling. Science Translational Medicine, 2020, 12, .	12.4	48
67	Cyclosporine A Impairs Nucleotide Binding Oligomerization Domain (Nod1)-Mediated Innate Antibacterial Renal Defenses in Mice and Human Transplant Recipients. PLoS Pathogens, 2013, 9, e1003152.	4.7	45
68	Reversal of Arthritis by Human Monomeric IgA Through the Receptorâ€Mediated SH2 Domain–Containing Phosphatase 1 Inhibitory Pathway. Arthritis and Rheumatology, 2015, 67, 1766-1777.	5.6	44
69	lgA1 Protease Treatment Reverses Mesangial Deposits and Hematuria in a Model of IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 2622-2629.	6.1	44
70	Elevation of serum IgA in spondyloarthropathies and IgA nephropathy and its pathogenic role. Current Opinion in Rheumatology, 1999, 11, 265-272.	4.3	38
71	lgE Receptor Type I-dependent Tyrosine Phosphorylation of Phospholipid Scramblase. Journal of Biological Chemistry, 2001, 276, 20407-20412.	3.4	38
72	Effect of IgA on Respiratory Burst and Cytokine Release by Human Alveolar Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 315-332.	2.9	37

#	Article	IF	CITATIONS
73	Value of biomarkers for predicting immunoglobulin A vasculitis nephritis outcome in an adult prospective cohort. Nephrology Dialysis Transplantation, 2017, 33, 1579-1590.	0.7	37
74	Phospholipid Scramblase 1 Modulates a Selected Set of IgE Receptor-mediated Mast Cell Responses through LAT-dependent Pathway. Journal of Biological Chemistry, 2008, 283, 25514-25523.	3.4	34
75	Selective Antibody Intervention of Toll-like Receptor 4 Activation through Fc Î ³ Receptor Tethering. Journal of Biological Chemistry, 2014, 289, 15309-15318.	3.4	33
76	Deferasirox and Vitamin D Improves Overall Survival in Elderly Patients with Acute Myeloid Leukemia after Demethylating Agents Failure. PLoS ONE, 2013, 8, e65998.	2.5	33
77	Prevention of Mantle Lymphoma Tumor Establishment by Routing Transferrin Receptor toward Lysosomal Compartments. Cancer Research, 2007, 67, 1145-1154.	0.9	32
78	Vitamin D Receptor Controls Cell Stemness in Acute Myeloid Leukemia and in Normal Bone Marrow. Cell Reports, 2020, 30, 739-754.e4.	6.4	32
79	Dysfunctions of the Iga system: a common link between intestinal and renal diseases. Cellular and Molecular Immunology, 2011, 8, 126-134.	10.5	31
80	Glomerular and serum immunoglobulin G subclasses in IgA nephropathy. Clinical Immunology and Immunopathology, 1989, 51, 338-347.	2.0	30
81	Recent advances in the physiopathology of IgA nephropathy. Nephrologie Et Therapeutique, 2018, 14, S1-S8.	0.5	30
82	High levels of gut-homing immunoglobulin A+ B lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients. Nephrology Dialysis Transplantation, 2021, 36, 452-464.	0.7	30
83	The Role of IgA and IgA Fc Receptors as Anti-Inflammatory Agents. Journal of Clinical Immunology, 2010, 30, 61-64.	3.8	29
84	Differential expression and function of IgA receptors (CD89 and CD71) during maturation of dendritic cells. Journal of Leukocyte Biology, 2004, 76, 1134-1141.	3.3	28
85	Fecal Microbiota Transplantation Modulates Renal Phenotype in the Humanized Mouse Model of IgA Nephropathy. Frontiers in Immunology, 2021, 12, 694787.	4.8	28
86	FcÂRIIa polymorphism: a susceptibility factor for immune complex-mediated lupus nephritis in Brazilian patients. Nephrology Dialysis Transplantation, 2004, 19, 1427-1431.	0.7	27
87	IgA Fc receptor I signals apoptosis through the FcRÎ ³ ITAM and affects tumor growth. Blood, 2007, 109, 203-211.	1.4	27
88	Immunoglobulin A as an anti-inflammatory agent. Clinical and Experimental Immunology, 2014, 178, 108-110.	2.6	27
89	Role of IgA receptors in the pathogenesis of IgA nephropathy. Journal of Nephrology, 2016, 29, 5-11.	2.0	27
90	Immune complex-mediated glomerulopathy in experimental Chagas' disease. Clinical Immunology and Immunopathology, 1991, 58, 102-114.	2.0	26

#	Article	IF	CITATIONS
91	Impaired Fcl^{\pm} receptor expression is linked to increased immunoglobulin A levels and disease progression in HIV-1-infected patients. Aids, 1995, 9, 229-234.	2.2	26
92	FcγRIIa-131R allele and FcγRIIIa-176V/V genotype are risk factors for progression of IgA nephropathy. Nephrology Dialysis Transplantation, 2005, 20, 2439-2445.	0.7	26
93	Type I interferon signaling in systemic immune cells from patients with alcoholic cirrhosis and its association with outcome. Journal of Hepatology, 2017, 66, 930-941.	3.7	26
94	Serum Iron Protects from Renal Postischemic Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 3605-3615.	6.1	25
95	Dysfunctions of Fca Receptors by Blood Phagocytic Cells in IgA Nephropathy1. Contributions To Nephrology, 1995, 111, 116-122.	1.1	22
96	Fc Gamma Receptor IIA (CD32A) R131 Polymorphism as a Marker of Genetic Susceptibility to Sepsis. Inflammation, 2016, 39, 518-525.	3.8	21
97	Fc Receptor Î ³ Chain Residues at the Interface of the Cytoplasmic and Transmembrane Domains Affect Association with FcαRI, Surface Expression, and Function. Journal of Biological Chemistry, 2004, 279, 26339-26345.	3.4	20
98	Transferrin Receptor Engagement by Polymeric IgA1 Induces Receptor Expression and Mesangial Cell Proliferation: Role in IgA Nephropathy. , 2007, 157, 144-147.		20
99	Role of gut–kidney axis in renal diseases and IgA nephropathy. Current Opinion in Gastroenterology, 2021, 37, 565-571.	2.3	20
100	CD89 Is a Potent Innate Receptor for Bacteria and Mediates Host Protection from Sepsis. Cell Reports, 2019, 27, 762-775.e5.	6.4	19
101	ENHANCED EXPRESSION OF Fcα RECEPTOR I ON BLOOD PHAGOCYTES OF PATIENTS WITH GRAM-NEGATIVE BACTEREMIA IS ASSOCIATED WITH TYROSINE PHOSPHORYLATION OF THE FcR-Î3 SUBUNIT. Shock, 2001, 16, 344-348.	2.1	17
102	IgA nephropathy: "State of the art― a report fromÂthe 15th International Symposium onÂlgAÂNephropathy celebrating the 50th anniversary of its first description. Kidney International, 2019, 95, 750-756.	5.2	17
103	Role of FcÎ ³ RIIIA (CD16) in IVIg-Mediated Anti-Inflammatory Function. Journal of Clinical Immunology, 2014, 34, 46-50.	3.8	16
104	Recruitment of CXCR3+ T cells into injured tissues in adult IgA vasculitis patients correlates with disease activity. Journal of Autoimmunity, 2019, 99, 73-80.	6.5	16
105	Pathogenic Role of IgA Receptors in IgA Nephropathy. , 2007, 157, 64-69.		15
106	Rifaximin as a Potential Treatment for IgA Nephropathy in a Humanized Mice Model. Journal of Personalized Medicine, 2021, 11, 309.	2.5	15
107	The Phenotypic Difference of IgA Nephropathy and its Race/Gender-dependent Molecular Mechanisms. Kidney360, 2021, 2, 1339-1348.	2.1	15
108	Phospholipid scramblase, a new effector of FcεRI signaling in mast cells. Molecular Immunology, 2002, 38, 1235-1238.	2.2	14

#	Article	IF	CITATIONS
109	Chimeric Fc Receptors Identify Ligand Binding Regions in Human Glycoprotein VI. Journal of Molecular Biology, 2006, 361, 877-887.	4.2	14
110	Recombinant soluble IgA Fc receptor: generation, biochemical characterization, and functional analysis of the recombinant protein. Journal of Leukocyte Biology, 1993, 53, 223-232.	3.3	13
111	T cell activation through Thy-1 is associated with the expression of a surface protein(p100) on a subset of CD4 cells. International Immunology, 1995, 7, 607-616.	4.0	13
112	p28, a Novel IgE Receptor-associated Protein, Is a Sensor of Receptor Occupation by Its Ligand in Mast Cells. Journal of Biological Chemistry, 2004, 279, 12312-12318.	3.4	13
113	IgA Fc Receptor I Is a Molecular Switch that Determines IgA Activating or Inhibitory Functions. Contributions To Nephrology, 2007, 157, 148-152.	1.1	12
114	Protective role of mouse IgG1 in cryoglobulinaemia; insights from an animal model and relevance to human pathology. Nephrology Dialysis Transplantation, 2016, 31, 1235-1242.	0.7	12
115	New therapeutic perspectives for IgA nephropathy in children. Pediatric Nephrology, 2021, 36, 497-506.	1.7	12
116	Identification of a surface protein (p100) associated with two glycosyl-phosphatidylinositol-linked molecules (Thy-1 and ThB) by natural anti-lymphocyte autoantibodies. European Journal of Immunology, 1992, 22, 2373-2380.	2.9	11
117	The interaction between a non-pathogenic and a pathogenic strain synergistically enhances extra-intestinal virulence in Escherichia coli. Microbiology (United Kingdom), 2011, 157, 774-785.	1.8	11
118	The balance of kinin receptors in the progression of experimental focal and segmental glomerulosclerosis. DMM Disease Models and Mechanisms, 2014, 7, 701-10.	2.4	11
119	Food antigens and Transglutaminase 2 in IgA nephropathy: Molecular links between gut and kidney. Molecular Immunology, 2020, 121, 1-6.	2.2	11
120	Are there animal models of IgA nephropathy?. Seminars in Immunopathology, 2021, 43, 639-648.	6.1	10
121	B LYMPHOCYTES UNDERGO APOPTOSIS BECAUSE OF FcγRIIb stress response to infection: A novel mechanism of cell death in sepsis. Shock, 2006, 25, 61-65.	2.1	9
122	Is complement the main accomplice in IgA nephropathy? From initial observations to potential complement-targeted therapies. Molecular Immunology, 2021, 140, 1-11.	2.2	9
123	Toll-like receptor 3 expression and function in childhood idiopathic nephrotic syndrome. Clinical and Experimental Immunology, 2015, 182, 332-345.	2.6	8
124	Regulation of the Tyrosine Phosphorylation of Phospholipid Scramblase 1 in Mast Cells That Are Stimulated through the High-Affinity IgE Receptor. PLoS ONE, 2014, 9, e109800.	2.5	8
125	Phospholipid scramblase 1 amplifies anaphylactic reactions in vivo. PLoS ONE, 2017, 12, e0173815.	2.5	8
126	SOLUBLE CD89 IS A CRITICAL FACTOR FOR MESANGIAL PROLIFERATION IN CHILDHOOD IgA NEPHROPATHY. Kidney International, 2021, , .	5.2	8

#	Article	IF	CITATIONS
127	Negative regulation of bacterial killing and inflammation by two novel CD16 ligands. European Journal of Immunology, 2016, 46, 1926-1935.	2.9	7
128	Editorial: The Role of Inhibitory Receptors in Inflammation and Cancer. Frontiers in Immunology, 2020, 11, 633686.	4.8	7
129	Hashimotor's Thyroiditis With a Monoclonal Antithyroglobulin Autoantibody: Disappearance of the Monoclonal Antibody After Thyroidectomy. Journal of Clinical Endocrinology and Metabolism, 1988, 66, 880-884.	3.6	6
130	Gluten, Transglutaminase, Celiac Disease and IgA Nephropathy. Journal of Clinical & Cellular Immunology, 2017, 08, .	1.5	6
131	Clinical phenotype and cytokine profile of adult IgA vasculitis with joint involvement. Clinical Rheumatology, 2022, 41, 1483-1491.	2.2	6
132	Rare Collagenous Heterozygote Variants in Children With IgA Nephropathy. Kidney International Reports, 2021, 6, 1326-1335.	0.8	5
133	Is There a Role for Gut Microbiome Dysbiosis in IgA Nephropathy?. Microorganisms, 2022, 10, 683.	3.6	5
134	Jean Berger (1930–2011). Kidney International, 2011, 80, 437-438.	5.2	2
135	Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. Journal of Cell Biology, 2008, 180, i1-i1.	5.2	2
136	Erythrocytosis associated with IgA nephropathy. EBioMedicine, 2022, 75, 103785.	6.1	2
137	L35. Fc receptors and cell activation. Presse Medicale, 2013, 42, 598-599.	1.9	1
138	Specific immune biomarker monitoring in two children with severe IgA nephropathy and successful therapy with immunoadsorption in a rapidly progressive case. Pediatric Nephrology, 2022, 37, 1597-1603.	1.7	1
139	Detection of antilineage specific leucocyte antibodies by a quantitative immunocytometry method in sera from candidates for renal allografts. Transplant Immunology, 1995, 3, 356-362.	1.2	0
140	lgA Receptors and Mesangial lgA Deposition. , 2009, , 211-224.		0
141	The Function of Mast Cells in Autoimmune Glomerulonephritis. Methods in Molecular Biology, 2015, 1220, 487-496.	0.9	0