
Paul W Noble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9695971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Image Analysis at Chronic Lung Allograft Dysfunction Onset Predicts Mortality. Transplantation, 2022, 106, 1253-1261.	1.0	6
2	Stem Cells and Progenitor Cells in Interstitial Lung Disease. , 2022, , 158-168.		2
3	CC-90001, a c-Jun N-terminal kinase (JNK) inhibitor, in patients with pulmonary fibrosis: design of a phase 2, randomised, placebo-controlled trial. BMJ Open Respiratory Research, 2022, 9, e001060.	3.0	17
4	Lung Transplantation for Covid-19–Related Respiratory Failure in the United States. New England Journal of Medicine, 2022, 386, 1187-1188.	27.0	72
5	Abnormal respiratory progenitors in fibrotic lung injury. Stem Cell Research and Therapy, 2022, 13, 64.	5.5	10
6	The ZIP8/SIRT1 axis regulates alveolar progenitor cell renewal in aging and idiopathic pulmonary fibrosis. Journal of Clinical Investigation, 2022, 132, .	8.2	37
7	Disruption of respiratory epithelial basement membrane in COVID-19 patients. Molecular Biomedicine, 2021, 2, 8.	4.4	4
8	Antibody-mediated depletion of CCR10+ EphA3+ cells ameliorates fibrosis in IPF. JCI Insight, 2021, 6, .	5.0	9
9	Mesenchymal growth hormone receptor deficiency leads to failure of alveolar progenitor cell function and severe pulmonary fibrosis. Science Advances, 2021, 7, .	10.3	10
10	Categorization of lung mesenchymal cells in development and fibrosis. IScience, 2021, 24, 102551.	4.1	46
11	The allograft injury marker CXCL9 determines prognosis of antiâ€HLA antibodies after lung transplantation. American Journal of Transplantation, 2021, , .	4.7	2
12	Risk factors for disease progression in idiopathic pulmonary fibrosis. Thorax, 2020, 75, 78-80.	5.6	22
13	Pre-existing traits associated with Covid-19 illness severity. PLoS ONE, 2020, 15, e0236240.	2.5	129
14	Single-Cell Reconstruction of Human Basal Cell Diversity in Normal and Idiopathic Pulmonary Fibrosis Lungs. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1540-1550.	5.6	107
15	Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 2020, 21, 2269.	4.1	202
16	Pre-existing traits associated with Covid-19 illness severity. , 2020, 15, e0236240.		0
17	Pre-existing traits associated with Covid-19 illness severity. , 2020, 15, e0236240.		0
18	Pre-existing traits associated with Covid-19 illness severity. , 2020, 15, e0236240.		0

 $\label{eq:pre-existing traits associated with Covid-19 \ illness \ severity.\ ,\ 2020,\ 15,\ e0236240.$ 18

#	Article	IF	CITATIONS
19	Pre-existing traits associated with Covid-19 illness severity. , 2020, 15, e0236240.		Ο
20	Mitogen-activated Protein Kinase–activated Protein Kinase 2 Inhibition Attenuates Fibroblast Invasion and Severe Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 41-48.	2.9	18
21	Cardiovascular Risks, Bleeding Risks, and Clinical Events from 3 Phase III Trials of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. Advances in Therapy, 2019, 36, 2910-2926.	2.9	18
22	Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Science Translational Medicine, 2019, 11, .	12.4	189
23	Hyaluronan synthase 2–mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Science Translational Medicine, 2019, 11, .	12.4	91
24	Pirfenidone in patients with idiopathic pulmonary fibrosis and more advanced lung function impairment. Respiratory Medicine, 2019, 153, 44-51.	2.9	54
25	Effect of pirfenidone in patients with more advanced idiopathic pulmonary fibrosis. Respiratory Research, 2019, 20, 55.	3.6	33
26	Pirfenidone Treatment in Individuals with Idiopathic Pulmonary Fibrosis: Impact of Timing of Treatment Initiation. Annals of the American Thoracic Society, 2019, 16, 927-930.	3.2	16
27	PD-L1 on invasive fibroblasts drives fibrosis in a humanized model of idiopathic pulmonary fibrosis. JCI Insight, 2019, 4, .	5.0	64
28	Syndecan-1 promotes lung fibrosis by regulating epithelial reprogramming through extracellular vesicles. JCl Insight, 2019, 4, .	5.0	50
29	Targeting of TAM Receptors Ameliorates Fibrotic Mechanisms in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1443-1456.	5.6	66
30	Time for a change: is idiopathic pulmonary fibrosis still idiopathic and only fibrotic?. Lancet Respiratory Medicine,the, 2018, 6, 154-160.	10.7	137
31	Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Reports, 2018, 22, 3625-3640.	6.4	392
32	Dose modification and dose intensity during treatment with pirfenidone: analysis of pooled data from three multinational phase III trials. BMJ Open Respiratory Research, 2018, 5, e000323.	3.0	35
33	Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respiratory Medicine,the, 2017, 5, 22-32.	10.7	200
34	An Open-Label Study of the Long-Term Safety of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis (RECAP). Respiration, 2017, 94, 408-415.	2.6	116
35	MicroRNA-29c Prevents Pulmonary Fibrosis by Regulating Epithelial Cell Renewal and Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 721-732.	2.9	46
36	Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. Lancet Respiratory Medicine,the, 2017, 5, 33-41.	10.7	240

#	Article	IF	CITATIONS
37	Effect of continued treatment with pirfenidone following clinically meaningful declines in forced vital capacity: analysis of data from three phase 3 trials in patients with idiopathic pulmonary fibrosis. Thorax, 2016, 71, 429-435.	5.6	151
38	Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nature Medicine, 2016, 22, 1285-1293.	30.7	211
39	Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis. Matrix Biology, 2016, 55, 35-48.	3.6	72
40	Pirfenidone Initiates a New Era in the Treatment of Idiopathic Pulmonary Fibrosis. Annual Review of Medicine, 2016, 67, 487-495.	12.2	37
41	Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. European Respiratory Journal, 2016, 47, 243-253.	6.7	349
42	Safety of pirfenidone in patients with idiopathic pulmonary fibrosis: integrated analysis of cumulative data from 5 clinical trials. BMJ Open Respiratory Research, 2016, 3, e000105.	3.0	96
43	Flow Cytometric Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 13-24.	2.9	191
44	Hyaluronan as a therapeutic target in human diseases. Advanced Drug Delivery Reviews, 2016, 97, 186-203.	13.7	167
45	miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways. JCI Insight, 2016, 1, e90301.	5.0	37
46	Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. Journal of Clinical Investigation, 2016, 126, 3063-3079.	8.2	101
47	Methylation-mediated BMPER expression in fibroblast activation in vitro and lung fibrosis in mice in vivo. Scientific Reports, 2015, 5, 14910.	3.3	35
48	Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. Journal of Experimental Medicine, 2015, 212, 235-252.	8.5	130
49	Validation of test performance characteristics and minimal clinically important difference of the 6-minute walk test in patients with idiopathic pulmonary fibrosis. Respiratory Medicine, 2015, 109, 914-922.	2.9	85
50	Sensitivity Analyses of the Change in FVC in a Phase 3 Trial of Pirfenidone for Idiopathic Pulmonary Fibrosis. Chest, 2015, 148, 196-201.	0.8	35
51	Cellular Mechanisms of Tissue Fibrosis. 7. New insights into the cellular mechanisms of pulmonary fibrosis. American Journal of Physiology - Cell Physiology, 2014, 306, C987-C996.	4.6	133
52	6-minute walk distance is an independent predictor of mortality in patients with idiopathic pulmonary fibrosis. European Respiratory Journal, 2014, 43, 1421-1429.	6.7	180
53	A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 2014, 370, 2083-2092.	27.0	2,959
54	Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 2014, 370, 2071-2082.	27.0	3,351

#	Article	lF	CITATIONS
55	Type 2 alveolar cells are stem cells in adult lung. Journal of Clinical Investigation, 2013, 123, 3025-3036.	8.2	1,352
56	Airway Epithelial Progenitors Are Region Specific and Show Differential Responses to Bleomycin-Induced Lung Injury. Stem Cells, 2012, 30, 1948-1960.	3.2	171
57	Pulmonary fibrosis: patterns and perpetrators. Journal of Clinical Investigation, 2012, 122, 2756-2762.	8.2	429
58	Take a deep breath: pulmonary research inspires. Journal of Clinical Investigation, 2012, 122, 2722-2723.	8.2	0
59	Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. Journal of Experimental Medicine, 2011, 208, 1459-1471.	8.5	322
60	Role of hyaluronan and hyaluronan-binding proteins inÂhuman asthma. Journal of Allergy and Clinical Immunology, 2011, 128, 403-411.e3.	2.9	89
61	Efficacy of a Tyrosine Kinase Inhibitor in Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 2011, 365, 1079-1087.	27.0	930
62	Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet, The, 2011, 377, 1760-1769.	13.7	1,711
63	Forced Vital Capacity in Patients with Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1382-1389.	5.6	390
64	Six-Minute-Walk Test in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1231-1237.	5.6	369
65	Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1475-83.	7.1	849
66	Hyaluronan as an Immune Regulator in Human Diseases. Physiological Reviews, 2011, 91, 221-264.	28.8	848
67	Regulation of Nonâ€Infectious Lung Injury, Inflammation, and Repair by the Extracellular Matrix Glycosaminoglycan Hyaluronan. Anatomical Record, 2010, 293, 982-985.	1.4	54
68	CD44 Deficiency Is Associated with Increased Bacterial Clearance but Enhanced Lung Inflammation During Gram-Negative Pneumonia. American Journal of Pathology, 2010, 177, 2483-2494.	3.8	43
69	Idiopathic pulmonary fibrosis. Orphanet Journal of Rare Diseases, 2008, 3, 8.	2.7	332
70	CD44 ls a Negative Regulator of Acute Pulmonary Inflammation and Lipopolysaccharide-TLR Signaling in Mouse Macrophages. Journal of Immunology, 2007, 178, 2469-2475.	0.8	127
71	Hyaluronan in Tissue Injury and Repair. Annual Review of Cell and Developmental Biology, 2007, 23, 435-461.	9.4	727
72	Idiopathic Pulmonary Fibrosis: Natural History and Prognosis. Clinics in Chest Medicine, 2006, 27, 11-16.	2.1	56

#	Article	IF	CITATIONS
73	The role of Toll-like receptors in non-infectious lung injury. Cell Research, 2006, 16, 693-701.	12.0	129
74	Matrix Regulation of Lung Injury, Inflammation, and Repair: The Role of Innate Immunity. Proceedings of the American Thoracic Society, 2006, 3, 401-404.	3.5	93
75	Case Study Review. Chest, 2005, 128, 540S-546S.	0.8	3
76	Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine, 2005, 11, 1173-1179.	30.7	1,291
77	Back to the Future. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 113-120.	2.9	83
78	The Clinical Course of Patients with Idiopathic Pulmonary Fibrosis. Annals of Internal Medicine, 2005, 142, 963.	3.9	530
79	Idiopathic pulmonary fibrosis: new insights into pathogenesis. Clinics in Chest Medicine, 2004, 25, 749-758.	2.1	92
80	Idiopathic pulmonary fibrosis. New insights into classification and pathogenesis usher in a new era therapeutic approaches. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, S27-31.	2.9	31
81	CD44 Deficiency Leads to Enhanced Neutrophil Migration and Lung Injury in Escherichia coli Pneumonia in Mice. American Journal of Pathology, 2002, 161, 2219-2228.	3.8	119
82	Resolution of Lung Inflammation by CD44. Science, 2002, 296, 155-158.	12.6	611
83	Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biology, 2002, 21, 25-29.	3.6	491
84	Regulation of plasminogen activator inhibitor-1 and urokinase by hyaluronan fragments in mouse macrophages. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L707-L715.	2.9	63
85	Hyaluronan Fragments Synergize with Interferon-Î ³ to Induce the C-X-C Chemokines Mig and Interferon-inducible Protein-10 in Mouse Macrophages. Journal of Biological Chemistry, 1998, 273, 35088-35094.	3.4	161
86	Hyaluronan Fragments Induce Nitric-oxide Synthase in Murine Macrophages through a Nuclear Factor κB-dependent Mechanism. Journal of Biological Chemistry, 1997, 272, 8013-8018.	3.4	264