Roland Tisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9693451/publications.pdf

Version: 2024-02-01

		172457	1	49698
69	3,288	29		56
papers	citations	h-index		g-index
69	69	69		3681
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Insulin-Dependent Diabetes Mellitus. Cell, 1996, 85, 291-297.	28.9	929
2	Single cell analysis shows decreasing FoxP3 and TGF \hat{l}^21 coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes. Journal of Experimental Medicine, 2005, 201, 1333-1346.	8.5	201
3	Immunoregulation of dendritic cells by IL-10 is mediated through suppression of the PI3K/Akt pathway and of $\hat{\mathbb{I}}^{\mathbb{B}}$ 8 kinase activity. Blood, 2004, 104, 1100-1109.	1.4	142
4	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	28.9	131
5	MerTK is required for apoptotic cell–induced T cell tolerance. Journal of Experimental Medicine, 2008, 205, 219-232.	8.5	127
6	Immunoregulation of Dendritic Cells. Clinical Medicine and Research, 2005, 3, 166-175.	0.8	118
7	IL-2 Protects Lupus-Prone Mice from Multiple End-Organ Damage by Limiting CD4â^'CD8â^' IL-17–Producing T Cells. Journal of Immunology, 2014, 193, 2168-2177.	0.8	105
8	Cellular immune response to cryptic epitopes during therapeutic gene transfer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10770-10774.	7.1	74
9	Plasmid DNAs Encoding Insulin and Glutamic Acid Decarboxylase 65 Have Distinct Effects on the Progression of Autoimmune Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2001, 167, 586-592.	0.8	65
10	Distribution and Characterization of GFP+ Donor Hematogenous Cells in Twitcher Mice after Bone Marrow Transplantation. American Journal of Pathology, 2000, 156, 1849-1854.	3.8	64
11	Central Nervous System Destruction Mediated by Glutamic Acid Decarboxylase-Specific CD4+ T Cells. Journal of Immunology, 2010, 184, 4863-4870.	0.8	61
12	Class I Major Histocompatibility Complex Anchor Substitutions Alter the Conformation of T Cell Receptor Contacts. Journal of Biological Chemistry, 2001, 276, 21443-21449.	3.4	58
13	A Glutamic Acid Decarboxylase 65-Specific Th2 Cell Clone Immunoregulates Autoimmune Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2001, 166, 6925-6936.	0.8	50
14	Early Autoimmune Destruction of Islet Grafts Is Associated with a Restricted Repertoire of IGRP-Specific CD8+ T Cells in Diabetic Nonobese Diabetic Mice. Journal of Immunology, 2006, 176, 1637-1644.	0.8	41
15	Cytotoxic-T-Lymphocyte-Mediated Elimination of Target Cells Transduced with Engineered Adeno-Associated Virus Type 2 Vector In Vivo. Journal of Virology, 2009, 83, 6817-6824.	3.4	41
16	Immunotherapy for the Prevention and Treatment of Type 1 Diabetes. International Reviews of Immunology, 2005, 24, 307-326.	3.3	39
17	Immunogenic Versus Tolerogenic Dendritic Cells: A Matter of Maturation. International Reviews of Immunology, 2010, 29, 111-118.	3.3	39
18	Gene gun-mediated DNA vaccination enhances antigen-specific immunotherapy at a late preclinical stage of type 1 diabetes in nonobese diabetic mice. Clinical Immunology, 2008, 129, 49-57.	3.2	37

#	Article	IF	Citations
19	Thymic Dendritic Cell Subsets Display Distinct Efficiencies and Mechanisms of Intercellular MHC Transfer. Journal of Immunology, 2017, 198, 249-256.	0.8	37
20	Identical \hat{I}^2 Cell-Specific CD8+ T Cell Clonotypes Typically Reside in Both Peripheral Blood Lymphocyte and Pancreatic Islets. Journal of Immunology, 2007, 178, 1388-1395.	0.8	36
21	Adiponectin Lowers Glucose Production by Increasing SOGA. American Journal of Pathology, 2010, 177, 1936-1945.	3.8	36
22	<scp>IFN</scp> â€Ĵ³ receptor deficiency prevents diabetes induction by diabetogenic <scp>CD</scp> 4 ⁺ , but not <scp>CD</scp> 8 ⁺ , <scp>T</scp> cells. European Journal of Immunology, 2012, 42, 2010-2018.	2.9	36
23	<i>Staphylococcus aureus</i> Protein A Disrupts Immunity Mediated by Long-Lived Plasma Cells. Journal of Immunology, 2017, 198, 1263-1273.	0.8	36
24	The Type and Frequency of Immunoregulatory CD4+ T-Cells Govern the Efficacy of Antigen-Specific Immunotherapy in Nonobese Diabetic Mice. Diabetes, 2007, 56, 1395-1402.	0.6	35
25	β-Cell–Specific IL-2 Therapy Increases Islet Foxp3+Treg and Suppresses Type 1 Diabetes in NOD Mice. Diabetes, 2013, 62, 3775-3784.	0.6	35
26	MerTK regulates thymic selection of autoreactive T cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4810-4815.	7.1	33
27	βâ€cellâ€specific ILâ€35 therapy suppresses ongoing autoimmune diabetes in NOD mice. European Journal of Immunology, 2017, 47, 144-154.	2.9	33
28	Lowâ€evidity CD8 ^{lo} T cells induced by incomplete antigen stimulation ⟨i>in vivo⟨/i> regulate naive higher avidity CD8 ^{hi⟨/sup> T cell responses to the same antigen. European Journal of Immunology, 2006, 36, 397-410.}	2.9	32
29	Inducible Adeno-Associated Virus-Mediated IL-2 Gene Therapy Prevents Autoimmune Diabetes. Journal of Immunology, 2011, 186, 3779-3786.	0.8	32
30	A novel role for c-Src and STAT3 in apoptotic cell–mediated MerTK-dependent immunoregulation of dendritic cells. Blood, 2009, 114, 3191-3198.	1.4	31
31	\hat{l}^2 Cell-Specific CD4+ T Cell Clonotypes in Peripheral Blood and the Pancreatic Islets Are Distinct. Journal of Immunology, 2009, 183, 7585-7591.	0.8	29
32	Chapter 5 Dysregulation of T Cell Peripheral Tolerance in Type 1 Diabetes. Advances in Immunology, 2008, 100, 125-149.	2.2	28
33	Islet lymphocyte subsets in male and female NOD mice are qualitatively similar but quantitatively distinct. Autoimmunity, 2009, 42, 678-691.	2.6	28
34	Thymic Development of Autoreactive T Cells in NOD Mice Is Regulated in an Age-Dependent Manner. Journal of Immunology, 2013, 191, 5858-5866.	0.8	28
35	More Stringent Conditions of Plasmid DNA Vaccination Are Required to Protect Grafted Versus Endogenous Islets in Nonobese Diabetic Mice. Journal of Immunology, 2003, 171, 469-476.	0.8	27
36	T-Cell Promiscuity in Autoimmune Diabetes. Diabetes, 2008, 57, 2099-2106.	0.6	27

#	Article	IF	Citations
37	Long-Term Remission of Diabetes in NOD Mice Is Induced by Nondepleting Anti-CD4 and Anti-CD8 Antibodies. Diabetes, 2012, 61, 2871-2880.	0.6	27
38	Suppression of Ongoing T Cell-Mediated Autoimmunity by Peptide-MHC Class II Dimer Vaccination. Journal of Immunology, 2009, 183, 4809-4816.	0.8	26
39	L-Selectin Is Not Required for T Cell-Mediated Autoimmune Diabetes. Journal of Immunology, 2002, 168, 2659-2666.	0.8	25
40	Kinetics of Adeno-Associated Virus Serotype 2 (AAV2) and AAV8 Capsid Antigen Presentation <i>In Vivo</i> Are Identical. Human Gene Therapy, 2013, 24, 545-553.	2.7	23
41	Cutting Edge: Antigen-Specific Thymocyte Feedback Regulates Homeostatic Thymic Conventional Dendritic Cell Maturation. Journal of Immunology, 2014, 193, 21-25.	0.8	22
42	IFN- \hat{I}^3 receptor deficiency prevents diabetes induction by diabetogenic CD4+T cells but not CD8+T cells. European Journal of Immunology, 2012, 42, n/a-n/a.	2.9	22
43	Reduced ILâ€2 expression in NOD mice leads to a temporal increase in CD62L ^{lo} FoxP3 ⁺ CD4 ^{T cells with limited suppressor activity. European Journal of Immunology, 2011, 41, 1480-1490.}	2.9	21
44	Role of Plasmacytoid Dendritic Cells in Type 1 Diabetes: Friend or Foe?. Diabetes, 2009, 58, 12-13.	0.6	20
45	Autoreactive Effector/Memory CD4+ and CD8+ T Cells Infiltrating Grafted and Endogenous Islets in Diabetic NOD Mice Exhibit Similar T Cell Receptor Usage. PLoS ONE, 2012, 7, e52054.	2.5	20
46	Immunotherapy of type 1 diabetes. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 227-236.	2.3	19
47	CD8 ⁺ T cells specific for \hat{l}^2 cells encounter their cognate antigens in the islets of NOD mice. European Journal of Immunology, 2009, 39, 2716-2724.	2.9	19
48	Temporal increase in thymocyte negative selection parallels enhanced thymic SIRPα ⁺ DC function. European Journal of Immunology, 2016, 46, 2352-2362.	2.9	16
49	Immune Checkpointâ€Bioengineered Beta Cell Vaccine Reverses Earlyâ€Onset Type 1 Diabetes. Advanced Materials, 2021, 33, e2101253.	21.0	16
50	Genetic vaccination for re-establishing T-cell tolerance in type 1 diabetes. Hum Vaccin, 2011, 7, 27-36.	2.4	14
51	Dendritic Cell Vaccination Induces Cross-Reactive Cytotoxic T Lymphocytes Specific for Wild-Type and Natural Variant Human Immunodeficiency Virus Type 1 Epitopes in HLA-A*0201/Kb Transgenic Mice. Clinical Immunology, 2001, 101, 51-58.	3.2	13
52	Parameters influencing antigen-specific immunotherapy for Type 1 diabetes. Immunologic Research, 2008, 42, 246-258.	2.9	13
53	Lymphopenia-driven CD8+ T cells are resistant to antigen-induced tolerance in NOD.scid mice. European Journal of Immunology, 2006, 36, 2003-2012.	2.9	12
54	<i>In Vivo</i> Bioengineering of Beta Cells with Immune Checkpoint Ligand as a Treatment for Early-Onset Type 1 Diabetes Mellitus. ACS Nano, 2021, 15, 19990-20002.	14.6	12

#	Article	IF	CITATIONS
55	Isolation and Transplantation of Different Aged Murine Thymic Grafts Journal of Visualized Experiments, 2015, , e52709.	0.3	7
56	Adiponectin-SOGA Dissociation in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1065-E1073.	3.6	7
57	Antibody Binding to CD4 Induces Rac GTPase Activation and Alters T Cell Migration. Journal of Immunology, 2016, 197, 3504-3511.	0.8	7
58	Immune Checkpoint Ligand Bioengineered Schwann Cells as Antigenâ€Specific Therapy for Experimental Autoimmune Encephalomyelitis. Advanced Materials, 2022, 34, e2107392.	21.0	7
59	Parameters influencing antigen-specific immunotherapy for type 1 diabetes. Immunologic Research, 2008, 41, 175-187.	2.9	6
60	Anti-coreceptor therapy drives selective T cell egress by suppressing inflammation-dependent chemotactic cues. JCI Insight, 2016, 1, e87636.	5.0	6
61	Dysregulation of Thymic Clonal Deletion and the Escape of Autoreactive T Cells. Archivum Immunologiae Et Therapiae Experimentalis, 2010, 58, 449-457.	2.3	3
62	Type 1 diabetes, inflammation and dendritic cells. Drug Discovery Today Disease Mechanisms, 2006, 3, 373-379.	0.8	2
63	Reestablishing T Cell Tolerance by Antibody-Based Therapy in Type 1 Diabetes. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 239-250.	2.3	1
64	Coreceptor therapy has distinct short- and long-term tolerogenic effects intrinsic to autoreactive effector T cells. JCI Insight, 2021, 6, .	5.0	1
65	T Cell Responsiveness to Complementary PR3 Protein Supports a Pathogenic Role of Autoantigen Complementarity in PR3-ANCA Autoimmune Disease. Clinical Immunology, 2007, 123, S121.	3.2	0
66	Characterization of Islet Infiltrating Lymphocytes in NOD mice. FASEB Journal, 2008, 22, 667.27.	0.5	0
67	Endogenous ILâ€2 production governs the in vitro induction of FoxP3â€expressing adaptive Treg in the NOD mouse. FASEB Journal, 2008, 22, 1073.5.	0.5	O
68	The regulation of murine Natural Killer T cell cytokine production by Mer tyrosine kinase. FASEB Journal, 2008, 22, 555-555.	0.5	0
69	Immune Checkpoint Ligand Bioengineered Schwann Cells as Antigenâ€Specific Therapy for Experimental Autoimmune Encephalomyelitis (Adv. Mater. 5/2022). Advanced Materials, 2022, 34, .	21.0	0