Shinya Yamanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9687371/publications.pdf

Version: 2024-02-01

687363 302126 1,527 56 13 39 citations h-index g-index papers 56 56 56 1477 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 2008, 87, 2798-2806.	6.4	607
2	Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General, 2008, 334, 357-365.	4.3	272
3	Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General, 2009, 355, 94-99.	4.3	201
4	Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel. Advanced Powder Technology, 2010, 21, 488-494.	4.1	67
5	Preparation of porous particles by liquid–liquid interfacial crystallization. Advanced Powder Technology, 2011, 22, 125-130.	4.1	28
6	Scalable and template-free production of mesoporous calcium carbonate and its potential to formaldehyde adsorbent. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	25
7	Heterogeneous nucleation and growth mechanism on hydrophilic and hydrophobic surface. Advanced Powder Technology, 2012, 23, 268-272.	4.1	22
8	One-step synthesis of magnetic iron–conducting polymer–palladium ternary nanocomposite microspheres with applications as a recyclable catalyst. Journal of Materials Chemistry A, 2013, 1, 4427.	10.3	22
9	AFM Investigation for the Initial Growth Processes of Calcium Carbonate on Hydrophilic and Hydrophobic Substrate. Crystal Growth and Design, 2009, 9, 3245-3250.	3.0	18
10	Production of scallop shell nanoparticles by mechanical grinding as a formaldehyde adsorbent. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	16
11	Phase transformation of mesoporous calcium carbonate by mechanical stirring. CrystEngComm, 2015, 17, 1773-1777.	2.6	16
12	Pure hydroxyapatite synthesis originating from amorphous calcium carbonate. Scientific Reports, 2021, 11, 11546.	3.3	16
13	Magnetorheological Fluids with Surface-Modified Iron Oxide Magnetic Particles with Controlled Size and Shape. ACS Applied Materials & Samp; Interfaces, 2021, 13, 20581-20588.	8.0	15
14	Colloidal dispersibility of fatty acid-capped iron nanoparticles and its effect on static and dynamic magnetorheological response. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 239-246.	4.7	14
15	Farm use of calcium hydroxide as an effective barrier against pathogens. Scientific Reports, 2021, 11, 7941.	3.3	14
16	Evaluation of photocatalysis of Au supported ZnO prepared by the spray pyrolysis method. Advanced Powder Technology, 2021, 32, 1619-1626.	4.1	14
17	Diffusion behavior in a liquid-liquid interfacial crystallization by molecular dynamics simulations. Journal of Chemical Physics, 2009, 131, 174707.	3.0	12
18	Reduction of formaldehyde emission from plywood using composite resin composed of resorcinol–formaldehyde and urea-modified scallop shell nanoparticles. Wood Science and Technology, 2017, 51, 297-308.	3.2	12

#	Article	IF	CITATIONS
19	Molecular dynamics simulations of the formation for NaCl cluster at the interface between the supersaturated solution and the substrate. Journal of Nanoparticle Research, 2010, 12, 831-839.	1.9	11
20	Development of Biodiesel Production Technology from Waste Cooking Oil with Calcium Oxide as Solid Base Catalyst. Journal of the Japan Petroleum Institute, 2007, 50, 79-86.	0.6	10
21	Measurement and Estimation of the Particle Size Distribution by the Buoyancy Weighing–Bar Method and the Rosin–Rammler Equation. Journal of Chemical Engineering of Japan, 2016, 49, 229-233.	0.6	9
22	Soybean oil methanolysis over scallop shell-derived CaO prepared via methanol-assisted dry nano-grinding. Advanced Powder Technology, 2017, 28, 1627-1635.	4.1	9
23	Difference in cadmium chemisorption on calcite and vaterite porous particles. Chemosphere, 2022, 297, 134057.	8.2	9
24	Production of thin graphite sheets for a high electrical conductivity film by the mechanical delamination of ternary graphite intercalation compounds. Carbon, 2012, 50, 5027-5033.	10.3	8
25	Template-free synthesis and particle size control of mesoporous calcium carbonate. Advanced Powder Technology, 2018, 29, 606-610.	4.1	8
26	Water-assisted synthesis of mesoporous calcium carbonate with a controlled specific surface area and its potential to ferulic acid release. RSC Advances, 2020, 10, 28019-28025.	3.6	8
27	Catalytic deoxygenation of triglyceride into drop-in fuel under hydrothermal condition with the help of in-situ hydrogen production by APR of glycerol by-produced. Fuel Processing Technology, 2021, 217, 106831.	7.2	7
28	Key particle properties of shells for cadmium chemisorption. Chemosphere, 2022, 287, 132257.	8.2	7
29	Characterization of Conductivity of Graphite-phenolic Resin Composite and its Application to Heating Plywood. Journal of the Society of Powder Technology, Japan, 2011, 49, 164-170.	0.1	6
30	Catalysis by CaO/SiO2 Composite Particle for Biodiesel Production. Kagaku Kogaku Ronbunshu, 2007, 33, 483-489.	0.3	6
31	Diffusion and Cluster Formation near NaCl Solution/Organic Solvent Interface in a Crystallization Process. Journal of Chemical Engineering of Japan, 2009, 42, 346-350.	0.6	5
32	Characterization of submicro-sized Ag/ZnO particles generated using the spray pyrolysis method. Advanced Powder Technology, 2022, 33, 103525.	4.1	5
33	Reduction of formaldehyde emission from urea-formaldehyde resin with a small quantity of graphene oxide. RSC Advances, 2021, 11, 32830-32836.	3.6	4
34	Design of calcium hydroxide–based granules for livestock sanitation. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100005.	6.1	3
35	Modeling of Brownian Diffusion of Aerosol by Langevin Dynamics. Kagaku Kogaku Ronbunshu, 2014, 40, 286-291.	0.3	3
36	Modulating the Pore Architecture of Ice-Templated Dextran Microparticles Using Molecular Weight and Concentration. Langmuir, 2022, 38, 6741-6751.	3.5	3

3

#	Article	IF	Citations
37	Effect of Surface and Interface Structures on Hydrogenation Characteristics in Ti-Ni Hydrogen Storage Materials. Journal of the Society of Powder Technology, Japan, 2009, 46, 704-709.	0.1	2
38	Solid electrolyte films in controlling their structures by electrophoretic deposition method. Advanced Powder Technology, 2011, 22, 682-687.	4.1	2
39	Growth and Transformation of <i>Spirulina platensis</i> by Calcium Ion-Deficient Medium. Kagaku Kogaku Ronbunshu, 2014, 40, 35-37.	0.3	2
40	Reduction of Formaldehyde Emission from Plywood Adhesive Filling a Ground Scallop Shell. Journal of the Society of Powder Technology, Japan, 2014, 51, 400-406.	0.1	2
41	Evaluation of Aerosol Penetration through a Cylindrical Tube by Langevin Dynamic. Kagaku Kogaku Ronbunshu, 2017, 43, 281-288.	0.3	2
42	Morphological and Structural Changes in Microcrystalline Cellulose from OPEFB by Mechanical Grinding. IOP Conference Series: Earth and Environmental Science, 2018, 166, 012001.	0.3	2
43	Solid Base Catalysis of Calcium Oxide for a Reaction to Convert Vegetable Oil into Biodiesel. Journal of the Society of Powder Technology, Japan, 2009, 46, 408-415.	0.1	1
44	Crystallization of Silver Nano-particles onto TiO2 Photocatalyst under Reducible Condition. Journal of the Society of Powder Technology, Japan, 2009, 46, 584-590.	0.1	1
45	Preparation of concentrated multilayer graphene dispersions and TiO2-graphene composites for enhanced hydrogen production. Diamond and Related Materials, 2019, 98, 107516.	3.9	1
46	Solid Electrolyte Films in Controlling their Structures by Electrophoretic Deposition Method. Journal of the Society of Powder Technology, Japan, 2009, 46, 236-243.	0.1	0
47	Heterogeneous Nucleation and Growth Mechanism on Hydrophilic and Hydrophobic Surface. Journal of the Society of Powder Technology, Japan, 2010, 47, 184-189.	0.1	0
48	Synthesis of Fine Particles by Arc Plasma Method and their Application to Functional Fluids. Journal of the Adhesion Society of Japan, 2013, 49, 177-182.	0.0	0
49	Microstructure Control of Calcium Carbonate by Colloid Process. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2015, 23, 193-195.	0.0	0
50	Production of Single- and Few-Layer Graphene from Graphite. , 2017, , 91-101.		0
51	ä¸å¢ä¸€æ¸ç"Ÿæ^㸒å^©ç"ïã™ã,‹è¢å¢ç²'åã®èª¿è£½ã«é—¢ã™ã,‹ç"ç©¶. Hosokawa Powder Technology Foundation	AN I NIJOJAL R	EP O RT, 2008
52	Modeling of Aerosol Diffusion by Langevin Dynamics Equation. Journal of the Society of Powder Technology, Japan, 2015, 52, 196-203.	0.1	0
53	Production of Scallop Shell Fine Particles for Harmful Gas Adsorbent. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2015, 23, 153-157.	0.0	0
54	Production Mechanism of Fine Particles with High Specific Surface Area through Water Addition to the Ground Products. Journal of the Society of Powder Technology, Japan, 2019, 56, 501-504.	0.1	0

#	Article	IF	CITATIONS
55	Embedding Fe ₃ O ₄ Nano-particles in Mesoporous Silica SBA15 and Catalytic Application of the Prepared Composite. Journal of the Society of Powder Technology, Japan, 2020, 57, 80-87.	0.1	O
56	Kinetics of amyloid accumulation in physiological viscosity. Colloids and Surfaces B: Biointerfaces, 2022, 214, 112449.	5.0	0